№5|2024

DRINKING WATER SUPPLY

UDC 544.723.212:661.12
DOI 10.35776/VST.2024.05.02

Remizova Iuliia, Golovanova Anna, Golubeva Polina, Mitilineos Aleksandr

Removing trace pharmaceuticals from water using household jug filters

Summary

The presence of residual amounts of pharmaceuticals in hydrosphere objects has recently become an increasingly significant problem. The production and consumption of drugs is constantly growing, and their range is also expanding. The existing level of wastewater treatment cannot guarantee the removal of hard-to-remove components, which can lead to the appearance and further circulation of various contaminants, including pharmaceuticals, in water bodies. The authors conducted experimental studies of the effectiveness of removing residual amounts of drugs of the group of non-steroidal anti-inflammatory drugs from water using household «jug» filters. Jug filters have been shown to be effective in removing trace amounts of pharmaceuticals from water. While studying the properties of sorbents included in the composition of filter mixtures, it was revealed that activated carbon was the most effective adsorption component responsible for the extraction of these compounds, whereas, the capacity of the remaining components of the sorption mixture in relation to ibuprofen and naproxen was insignificant.

Key words

, , , ,

For citation: Remizova Iu. A., Golovanova A. P., Golubeva P. I., Mitilineos A. G. Removing trace pharmaceuticals from water using household jug filters. Vodosnabzhenie i Sanitarnaia Tekhnika, 2024, no. 5, pp. 10–18. DOI: 10.35776/VST.2024.05.02. (In Russian).

The further text is accessible on a paid subscription.
For authorisation enter the login/password.
Or subscribe

REFERENCES

  1. Фармацевтический рынок России. Итоги 2022 года. – М.: ЗАО «Группа ДСМ», 2022. 128 с.
    Farmatsevticheskii rynok Rossii. Itogi 2022 goda [Pharmaceutical market of Russia. Results of 2022. Moscow, DSM Group CJSC Publ., 2022, 128 p.].
  2. The pharmaceutical industry in figures. The European Federation of Pharmaceutical Industries and Associations. Brussels-Belgium, 2023. 28 p.
  3. Aherne G. W., English J., Marks V. The role of immunoassay in the analysis of microcontaminants in water samples. Ecotoxicology and Environmental Safety, 1985, v. 9, pp. ­79–83.
  4. Santos L., Araujo A., Fachini A., et al. Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment. Journal of Hazardous Materials, 2010, v. 175, pp. 45–95.
  5. Доклад «О состоянии и использовании водных ресурсов Российской Федерации в 2020 году». – М.: Росводресурсы, НИА-Природа, 2022. 510 с.
    Doklad «O sostoianii i ispol’zovanii vodnykh resursov Rossiiskoi Fedratsii v 2020 godu [Report «On the state and use of water resources of the Russian Federation in 2020». Moscow, Rosvodresursy, NIA-Priroda Publ., 2022, 510 p.].
  6. Государственный доклад «О состоянии санитарно-эпидемиологического благополучия населения в Российской Федерации в 2021 году». – М.: Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека, 2022. 340 с.
    Gosudarstvennyi doklad «O sostoianii sanitarno-epidemiologicheskogo blagopoluchiia naseleniia Rossiiskoi Federatsii v 2021 godu [State report «On the state of sanitary and epidemiological well-being of the population in the Russian Federation in 2021». Moscow, Federal Service for Supervision of Consumer Rights Protection and Human Welfare, 2022, 340 p.].
  7. Chernova E., Zhakovskaya Z., Berezina N. Occurrence of pharmaceuticals in the eastern Gulf of Finland (Russia). Environmental Science and Pollution Research, 2021, v. 28, pp. 68871–68884.
  8. Баренбойм Г. М., Чиганова M. A., Березовская И. В. Особенности загрязнения поверхностных водных объектов компонентами лекарственных средств // Водное хозяйство России: проблемы, технологии, управление. 2014. № 3. С. ­131–141.
    Barenboim S. A., Chiganova M. A., Berezovskaia I. V. [Specific features of contamination of surface water bodies with drug components]. Vodnoe Khoziaistvo Rossii: Problemy, Tekhnologii, Upravlenie, 2014, no. 3, pp. 131–141. (In Russian).
  9. Буймова С. А., Бубнов А. Г., Разумова А. И., Федотова Е. А. Исследование родниковых вод на содержание фармацевтических препаратов // Экология урбанизированных территорий. 2015. № 2. С. 34–38.
    Buimova S. A., Bubnov A. G., Razumova A. I., Fedotova E. A. [Study of spring waters for the concentration of pharmaceuticals]. Ekologiia Urbanizirovannykh Territorii, 2015, no. 2, pp. 34–38. (In Russian).
  10. Iryna Labunska, Kevin Brigden, David Santillo, et. al. RUSSIAN REFUSE III: Investigation of organic and heavy metal contaminants input and distribution in selected rivers of the Russian Federation. Greenpeace Research Laboratories Technical Note 04/2011: 32 p.
  11. Vieno N., et al. Pharmaceuticals in the aquatic environment of the Baltic Sea Region-A Status Report, 2017, 49 p.
  12. Ремизова Ю. А., Голованова А. П., Рудакова Д. А., Митилинеос А. Г. Экспериментальная оценка эффективности удаления остаточных количеств антибиотиков и стероидных гормонов из воды бытовыми водоочистителями // Водоснабжение и санитарная техника. 2021. № 3. С. 9–15. DOI: 10.35776/VST.2021.03.02.
    Remizova Iu. A., Golovanova A. P., Rudakova D. A., Mitilineos A. G. [Experimental estimation of the efficiency of removing residual amounts of antibiotics and steroid hormones from water with home water purification systems]. Vodosnabzhenie i Sanitarnaia Tekhnika, 2021, no. 3, pp. 9–15. DOI: 10.35776/VST.2021.03.02. (In Russian).
  13. Пат. 2162010, РФ. Адсорбционный материал (5 вариантов) / Шмидт Д. Л., Пименов А. В., Либерман А. И. // Изобретения. Полезные модели. 2001. № 2.
    Shmidt D. L., Pimenov A. V., Liberman A. I. [ Pat. 2162010, RF. Adsorption material (5 options). Izobreteniia. Poleznye Modeli, 2001, no. 2. (In Russian).
  14. Ríos A. L. M., et al. Pharmaceuticals as emerging pollutants: Case naproxen an overview. Chemosphere, 2021, v. 291, p. 132822.
  15. Runkel R., Forchielli E., Boost G., et. al. Naproxen – metabolism, excretion and comparative pharmacokinetics. Scandinavian Journal of Rheumatology, 1973, 2 (sup 2), pp. 29–36.
  16. Davies N. M. Clinical pharmacokinetics of ibuprofen. Clinical Pharmacokinetics, 1998, v. 34, no. 2, pp. 101–154.
  17. Necibi M. C., Dhiba D., El Hajjaji S. Contaminants of emerging concern in African wastewater effluents: occurrence, impact and removal technologies. Sustainability, 2021, v. 13, no. 3, p. 1125.
  18. Akbay E., et al. In Vitro evaluation of naproxen metabolite, O-Desmethylnaproxen on a mouse connective tissue fibroblast cells. Hacettepe Journal of Biology and Chemistry, 2021, 49 (1), pp. 25–36.
  19. Zur J., et al. Organic micropollutants paracetamol and ibuprofen-toxicity, biodegradation, and genetic background of their utilization by bacteria. Environmental Science and Pollution Research, 2018, v. 25, pp. 21498–21524.
  20. Togola A., Budzinski H. Analytical development for analysis of pharmaceuticals in water samples by SPE and GC–MS. Analytical and Bioanalytical Chemistry, 2007, v. 388 (3), pp. 627–635.
  21. Langmuir I. Chemical reactions at low pressures. Journal American Chemical Society, 1915, v. 27, pp. 1139–1143.
  22. Boyd G. E., Adamson A. W., Myers L. S. The exchange adsorption of ions from aqueous solutions by organic zeolites. II. Kinetics. Journal American Chemical Society, 1947, v. 69, no. 11, pp. 2836–2848.
  23. Weber Jr. W. J., Morris J. C. Kinetics of adsorption on carbon from solution. Journal of the Sanitary Engineering Division, 1963, v. 89, pp. 31–60.
  24. Lagergren S. About the theory of so-called adsorption of soluble substances. Kung Sven Veten Hand, 1898, v. 24:1, pp. 39–45.
  25. Ho Y. S., McKay G. Kinetics of pollutant sorption by biosorbents: a review. Separation and Purification Methods, 2000, v. 29, pp. 189–232.

Журнал ВСТ включен в новый перечень ВАК

Шлафман В. В. Проектирование под заданную ценность, или достижимая эффективность технических решений – что это?

Banner Kofman 1