№10|2024

КОНТРОЛЬ КАЧЕСТВА ВОДОИСТОЧНИКОВ

UDC 556.531
DOI 10.35776/VST.2024.10.02

Mirasbekov Rakhman, Ialaletdinova A. V., Yalaletdinov Radik, Vazhdaev Konstantine, Аллабердин А. Б., Iusupov Artur

Simulation of the temporal variations in water color of a water source

Summary

The time series of water color at the surface water intake were processed for a 28-year period (1994–2021). The attained results were compared with the results of a previous study for 18 years (1997–2014). New patterns of water color variations (28 years) were identified that differ from those of the earlier studies (18 years). It was determined that the annual seasonal changes in water color noted earlier (18 years) existed also over the 28-year period; however, the values ​​of this indicator for the same months differed. It was found that the average annual values ​​of the indicator changed stochastically; periods of the water color reduction were noted (1998–2009, 2016–2021) alongside with the periods of the indicator value increase (1995–1998, 2009–2015). It was revealed that the downward trend in the indicator values ​​continued for another period of 28 years; however, more slowly compared to the 18-year period. Apparently, the upward trend in water color values ​​in the period 2009–2015 had certain effect on the trend equation for the entire period, as well as on the changes in the contribution of the time series components compared to the 18-year period. The analysis of the time series (additive modelling with the average annual smoothing method) revealed that for the 28-year period, the contribution of the seasonal value to the water color values ​​decreased and amounted more than 49.6%. A fairly significant increase in the contribution of the random variable (from 27.8 to 46.2%) was also noted. The analysis and comparison of different periods (1998–2009, 2009–2015 and 2016–2021) shows that the quality of water in the source by color is affected by different factors. An increase in the contributions of the seasonal and random components leads to an increase or decrease in the indicator values. Differentiation of the annual cycle of the water source into the periods characterized by similar trends in water color variations revealed differences in the time frames compared to the 18-year period. This may be evidence that, in addition to natural factors, water color may also be affected by the urban agglomeration.

Key words

, , , , , , , ,

For citation: Mirasbekov R., Yalaletdinova A. V., Yalaletdinov R. F., Vazhdaev K. V., Allaberdin A. B., Iusupov A. M. Simulation of the temporal variations in water color of a water source. Vodosnabzhenie i Sanitarnaia Tekhnika, 2024, no. 10, pp. 17–22. DOI: 10.35776/VST.2024.10.02. (In Russian).

The further text is accessible on a paid subscription.
For authorisation enter the login/password.
Or subscribe

REFERENCES

  1. Беус А. А., Грабовская Л. И., Тихонова Н. В. Геохимия окружающей среды. – М.: Недра, 1976. 248 с.
    Beus A. A., Grabovskaia L. I., Tikhonova N. V. Geokhimiia okruzhaiushchei sredy [Geochemistry of the environment. Moscow, Nedra Publ., 1976, 248 p.].
  2. Puczko K., Jekatierynczuk-Rudczyk E. Extreme hydro-meteorological events influence to water quality of small rivers in urban area: a case study in Northeast Poland. Scientific Reports, 2020, v. 10, pp. 10255.
  3. Кубракова И. В., Тютюнник О. А., Кощеева И. Я., Сагадов А. Ю., Набиуллина С. Н. Миграционное поведение платиновых металлов в природно-техногенных системах // Геохимия. 2017. № 1. С. 68–85.
    Kubrakova I. V., Tiutiunnik O. A., Koshcheeva I. Ia., Sagadov A. Iu., Nabiullina S. N. [Migratory behavior of platinum group metals in natural and man-made systems]. Geokhimiia, 2017, no. 1, pp. 68–85. (In Russian).
  4. Пономарев А. Я., Манвелов А. Н., Шмырев В. И., Шмырев Д. В. Влияние физико-химических свойств элементов и условий природной среды на миграцию загрязнений // Человеческий капитал. 2015. № 11–12 (83–84). С. 40–44.
    Ponomarev A. Ia., Manvelov A. N., Shmyrev V. I., Shmyrev D. V. [The impact of physical and chemical properties of elements and environmental conditions on the pollution migration]. Chelovecheskii Kapital, 2015, no. 11–12 (83–84), pp. 40–44. (In Russian).
  5. Sheesley R. J., Schauet J. J., Hemming J. D., Geis S., Barman M. A. Seasonal and spatial relationship of chemistry and toxicity in atmospheric particulate matter using aquatic bioassays. Environmental Science and Technology, 2005, v. 39, no. 4, pp. 999–1010.
  6. Янин Е. П. Органические вещества техногенного происхождения в водах городских рек // Экологическая экспертиза. 2004. № 4. С. 42–67.
    Ianin E. P. [Organic substances of technogenic origin in urban river water]. Ekologicheskaia Ekspertiza, 2004, no. 4, pp. 42–67. (In Russian).
  7. Бигалиев А. Б., Синтюрина А. В., Бияшева З. М. К вопросу о патогенном действии бензапирена, как загрязнителя окружающей среды (обзор) // Вестник КазНУ. Серия экологическая. 2009. № 1 (24). С. 14–21.
    Bigaliev A. B., Sintiurina A. V., Biiasheva Z. M. [On the pathogenicity of benzopyrene as an environmental pollutant (a review)]. Vestnik KazNU. Environmental Series, 2009, no. 1 (24), pp. 14–21. (In Russian).
  8. Карпухин М. М., Ладонин Д. В. Влияние компонентов почвы на поглощение тяжелых металлов в условиях техногенного загрязнения // Почвоведение. 2008. № 11. С. 1388–1398.
    Karpukhin M. M., Ladonin D. V. [The effect of soil components on the absorption of heavy metals under the conditions of technogenic pollution]. Pochvovedenie, 2008, no. 11, pp. 1388–1398. (In Russian).
  9. Федотов Р. В., Щукин С. А., Степаносьянц А. О., Чепкасова Н. И. Современные технологии очистки природных вод от антропогенных загрязнений // Современные наукоемкие технологии. 2016. № 9–3. С. 452–456.
    Fedotov R. V., Shchukin S. A., Stepanos’iants A. O., Chepkasova N. I. [Advanced technologies of removing anthropogenic pollution from natural water]. Sovremennye Naukoemkie Tekhnologii, 2016, no. 9–3, pp. 452–456. (In Russian).
  10. Малкова М. А., Белолипцев И. И., Вождаева М. Ю., Кантор Е. А. Оценка качества питьевой воды в период 2005–2016 гг. методом ранжирования временных периодов и содержания тригалогенметанов по степени их влияния на загрязненность питьевой воды // Башкирский химический журнал. 2018. Т. 25. № 2. С. 99–102. DOI: 10.17122/bcj-2018-2-99-102.
    Malkova M. A., Beloliptsev I. I., Vozhdaeva M. Iu., Kantor E. A. [Estimation of drinking water quality in the period 2005–2016 using the method of ranking time periods and trihalomethane concentration depending on the degree of their impact on drinking water pollution]. Bashkirskii Khimicheskii Zhurnal, 2018, v. 25, no. 2, pp. 99–102. DOI: 10.17122/bcj-2018-2-99-102. (In Russian).
  11. Ялалетдинова А. В., Малкова М. А., Кантор Е. А. 2022. Исследование структуры временных рядов общей жесткости, мутности, цветности и окисляемости в реке. preprints.ru. doi.org/10.24108/preprints-3112581.
    Yalaletdinova A. V., Malkova M. A., Kantor E. A. 2022. Issledovanie struktury vremennykh riadov obshchei zhestkosti, mutnosti, tsvetnosti i okisliaemosti v reke [2022. Study of the structure of time series of total hardness, turbidity, color and oxidability in a river. preprints.ru. doi.org/10.24108/preprints-3112581].
  12. Тюрин Ю. Н., Макаров А. А. Анализ данных на компьютере. – М.: ИНФРА-М, 2002. 528 с.
    Tiurin Iu. N., Makarov A. A. Analiz dannykh na kompiutere [Data analysis on a computer. Moscow, INFRA-M Publ., 2002, 528 p.].
  13. Гранберг А. Г., Гамбаров Г. М., Журавель Н. М., Королев Ю. Г. Статистическое моделирование и прогнозирование. – М.: Финансы и статистика, 1990. 383 с.
    Granberg A. G., Gambarov G. M., Zhuravel’ N. M., Korolev Iu. G. Statisticheskoe modelirovanie i prognozirovanie [Statistical simulation and prediction. Moscow, Finansy i Statistika Publ., 1990, 383 p.].
  14. Якушев А. А., Горбатков С. А., Габдрахманова Н. Т. Многомерные статистические методы и нейросетевые модели в экономическом анализе. – Уфа: Издательский центр «Башкирский территориальный институт профессиональных бухгалтеров», 2001. 266 с.
    Iakushev A. A., Gorbatkov S. A., Gabdrakhmanova N. T. Mnogomernye statisticheskie metody i neirosetevye modeli v ekonomicheskom analize [Multivariate statistical methods and neural network models in economic analysis]. Ufa, Bashkir Territorial Institute of Professional Accountants Publ., 2001, 266 p.].

Журнал ВСТ включен в новый перечень ВАК

Шлафман В. В. Проектирование под заданную ценность, или достижимая эффективность технических решений – что это?

Banner Kofman 1