№6|2024

WATER TREATMENT

UDC 628.165:66.081.6
DOI 10.35776/VST.2024.06.03

Babenko Kirill, Kagramanov Georgii, Бланко-Педрехон А. М.

Desalination of sea water: trends, experience and development prospects in the Russian Federation

Summary

Fresh water is a limited and unevenly distributed resource. Despite significant fresh water resources, some regions of the Russian Federation experience a shortage of it, which affects the dynamics of the economic development and living standards. This fact requires a revision of the classical approach to the environmental management, in particular, to the extraction of fresh water from sea and brackish waters. The most common desalination technologies are thermal (distillation) and pressure membrane (reverse osmosis and nanofiltration) processes. Over the past quarter century, reverse osmosis has become the predominant water desalination technology, accounting for more than 70% of all production capacity in the world. Nevertheless, reverse osmosis has a number of significant limitations, the consideration of which while designing desalination plants is a prerequisite for the subsequent efficient and reliable operation of the facilities. Strict requirements for the quality of source water supplied to reverse osmosis membranes necessitate the use of complex and often multi-stage seawater pretreatment systems. The choice of technical solutions for pre-treatment and «architecture» of reverse osmosis plants is the subject of a comprehensive technical and economic analysis with account of local aspects, including the region of construction, its natural and climatic conditions and available infrastructure. The shortage of water resources and the climatic and oceanological conditions of the coastal regions of the Russian Federation atypical for the global desalination industry make the solution to this optimization problem relevant and appropriate.

Key words

, , , , , , ,

For citation: Babenko K. A., Kagramanov G. G., Blanko-Pedrekhon A. M. Desalination of sea water: trends, experience and development prospects in the Russian Federation. Vodosnabzhenie i Sanitarnaia Tekhnika, 2024, no. 6, pp. 13–21. DOI: 10.35776/VST.2024.06.03. (In Russian).

The further text is accessible on a paid subscription.
For authorisation enter the login/password.
Or subscribe

REFERENCES

  1. Guppy L., Anderson K. Global water crisis: the facts. United Nations University Institute for Water, Environment and Health. Hamilton, ON, Canada, 2017, рр. 1–16.
  2. Государственный доклад «О состоянии и об охране окружающей среды Российской Федерации в 2015 году». – М.: Минприроды России, НИА-Природa, 2016.
    Gosudarstvennyi doklad «O sostoianii i ob okhrane okruzhaiushchei sredy Rossiiskoi Federatsii v 2015 godu» [State report «On the state and protection of the environment of the Russian Federation in 2015». Moscow, Ministry of Natural Resources and Environment of Russia, NIA-Priroda Publ., 2016.].
  3. Шикломанов И. А. Водные ресурсы России и их использование. – СПб.: Государственный гидрологический институт, 2008. 600 с.
    Shiklomanov I. A. Vodnye resursy Rossii i ikh ispol’zovanie [Water resources of Russia and their use. Saint-Petersburg, State Hydrological Institute Publ., 2008, 600 p.].
  4. Калиманов Т. А., Усова Е. В., Татосян М. Л. Водные ресурсы Российской Федерации, их использование и состояние // Общество. Среда. Развитие. 2017. № 4. С. 136–144.
    Kalimanov T. A., Usova E. V., Tatosian M. L. [Water resources of the Russian Federation, their use and condition]. Obshchestvo. Sreda. Razvitie, 2017, no. 4, pp. 136–144. (In Russian).
  5. Доклад «О состоянии и использовании водных ресурсов Российской Федерации в 2020 году». – М.: Росводресурсы, НИА-Природа, 2022. 510с.
    Doklad «O sostoianii i ispol’zovanii vodnykh resursov Rossiiskoi Federatsii v 2020 godu» [Report «On the state and use of the water resources of the Russian Federation in 2020». Moscow, Rosvodresursy, NIA-Priroda Publ., 2022, 510p.].
  6. Voutchkov N. Desalination engineering: planning and design. The McGraw-Hill Companies, Inc., 2013, 642 р. MHID: 0-07-177716-4.
  7. Davenport D. M., Akshay Deshmukh, Werber Jay R., Elimelech M. High-pressure reverse osmosis for energy-efficient hypersaline brine desalination: Current status, Design Considerations, and Research Needs. Environmental Science & Technology Letters, 2018, v. 5 (8), pp. 467–475. DOI: 10.1021/ACS.ESTLETT.8B00274.
  8. Мажуга А. Г., Каграманов Г. Г., Парусов Д. В., Бланко-Педрехон А. М. Проблемы опреснения минерализованных вод аридных и вододефицитных территорий // Водоснабжение и санитарная техника. 2022. № 2. C. 23–27. DOI: 10.35776/VST.2022.02.03.
    Mazhuga A. G., Kagramanov G. G., Parusov D. V., Blanko-Pedrekhon A. M. [Aspects of the desalination of mineralized water in arid and water-deficient territories]. Vodosnabzhenie i Sanitarnaia Tekhnika, 2022, no. 2, pp. 23–27. DOI: 10.35776/VST.2022.02.03. (In Russian).
  9. Voutchkov N. Considerations for selection of seawater filtration pretreatment system. Desalination, 2010, v. 261, pp. 354–364. DOI: 10.1016/j.desal.2010.07.002.
  10. Desormeaux E. D., Meyerhofer P. F., Luckenbach H. R., Kudela R. M. Pilot-testing multiple pretreatment systems for seawater. IDA Journal Desalination Water Reuse, 2011, v. 3, pp. 42–52. DOI: 10.1179/ida.2011.3.1.42.
  11. AMTA. America’s Authority in Membrane Treatment; American Membrane Technology Association Pretreatment for Membrane Processes. Englewood, FL, USA, 2012, pp. 1–4. https://www.amtaorg.com/wp-content/uploads/12_Pretreatment.pdf.
  12. Voutchkov N. Desalination project cost estimating and management. Taylor & Francis, a CRC title, 2019, 249 р. LCCN: 2018031237. MHID: 0-07-177716-4.
  13. Alaa Abushawish, Ines Bouaziz, Ismail W. Almanassra, et. al. Desalination pretreatment technologies: current status and future developments. Water, 2023, v. 15, no. 8. DOI: 10.3390/w15081572.
  14. Жилин Ю. Н. Опреснение воды Черного и Каспийского морей с использованием рулонных обратноосмотических элементов BW30-400 // Химическая промышленность сегодня. 2016. № 12. C. 29–33.
    Zhilin Iu. N. [Desalination of water of the Black and Caspian Seas using roll-type reverse osmosis elements BW30-400]. Khimicheskaia Promyshlennost’ Segodnia, 2016, no. 12, pp. 29–33. (In Russian).
  15. Кисель А. В. Опреснение морской воды Черного, Азовского и Каспийского морей методами мембранных технологий // Вестник науки. 2019. Т. 3. № 2. C. 79–94.
    Kisel’ A. V. [Desalination of sea water of the Black, Azov and Caspian seas using membrane technologies]. Vestnik Nauki, 2019, v. 3, no. 2, pp. 79–94. (In Russian).
  16. Десятов А. В., Колесников В. А., Кручинина Н. Е., Ландырев А. М., Колесников А. В. Двухступенчатая схема удаления соединений бора при опреснении морской воды методом обратного осмоса // Теоретические основы химической технологии. 2015. № 4. C. 389–393. DOI: 10.7868/S0040357115040041.
    Desiatov A. V., Kolesnikov V. A., Kruchinina N. E., Landyrev A. M., Kolesnikov A. V. [Two-stage scheme for removing boron compounds during seawater desalination by the reverse osmosis method]. Teoreticheskie Osnovy Khimicheskoi Tekhnologii, 2015, no. 4, pp. 389–393. DOI: 10.7868/S0040357115040041. (In Russian).
  17. Edo Bar-Zeev, Natalia Belkin, Boris Liberman, et. al. Bioflocculation: Chemical free, pre-treatment technology for the desalination industry. Water Research, 2013, v. 47, pp. 3093–3102. DOI: 10.1016/j.watres.2013.03.013.
  18. Andrea R. Guastalli, F. Xavier Simon, Ywann Penru, et. al. Comparison of DMF and UF pre-treatments for particulate material and dissolved organic matter removal in SWRO desalination. Desalination, 2013, v. 322, pp. 144–150. DOI: 10.1016/j.desal.2013.05.005.
  19. Almotasembellah Abushaban, Sergio G. Salinas-Rodriguez, Delia Pastorelli, et. al. Assessing pretreatment effectiveness for particulate, organic and biological fouling in a full-scale SWRO Desalination Plant. Membranes, 2021, v. 11, no. 3, pp. 1–15. DOI: 10.3390/membranes11030167.
  20. Gloria Fernándeza, Fidel Plazab, Gloria Garralónb, et. al. A comparative study of ultrafiltration and physicochemical process as pretreatment of seawater reverse osmosis. Desalination and Water Treatment, 2012, v. 42, рр. 73–79. DOI: 10/5004/dwt.2012.2460.
  21. Yawei Du, Lixin Xie, Yan Liu, et. al. Optimization of reverse osmosis networks with split partial second pass design. Desalination, 2015, v. 365, pp. 365–380. DOI: 10.1016/j.desal.2015.03.019.
  22. Кузин Е. Н. Очистка сточных вод гальванического производства комплексными коагулянтами // Успехи в химии и химической технологии. 2019. Т. 33. № 5. C. 31–33.
    Kuzin E. N. [Treatment of wastewater of galvanic production using complex coagulants]. Uspekhi v Khimii i Khimicheskoi Tekhnologii, 2019, v. 33, no. 5, pp. 31–33. (In Russian).
  23. Хаердинова А. Р., Кузин Е. Н., Кручинина Н. Е., Любушкин Т. Г., Рубин Е. М. Очистка сточных вод нефтедобычи с использованием комплексных коагулянтов // Успехи в химии и химической технологии. 2019. Т. 33. № 5. C. 96–98.
    Khaerdinova A. R., Kuzin E. N., Kruchinina N. E., Liubushkin T. G., Rubin E. M. [Purification of oil production wastewater using complex coagulants]. Uspekhi v Khimii i Khimicheskoi Tekhnologii, 2019, v. 33, no. 5, pp. 96–98. (In Russian).
  24. Руденко Л. И., Хан В. Е.-И., Пархоменко В. И., Кашковский В. И., Джужа О. В., Аксеновская О. А., Ивонин М. В., Шукайло Б. Н., Рябченко П. Л. Очистка жидких радиоактивных отходов от органических соединений с использованием титаново-железных коагулянтов // Энерготехнологии и ресурсосбережение. 2013. № 4. C. 59–64.
    Rudenko L. I., Khan V. E.-I., Parkhomenko V. I., Kashkovskii V. I., Dzhuzha O. V., Aksenovskaia O. A., Ivonin M. V., Shukailo B. N., Riabchenko P. L. [Removing organic compounds from liquid radioactive waste using titanium-iron coagulants]. Energotekhnologii i Resursosberezhenie, 2013, no. 4, pp. 59–64. (In Russian).
  25. Кручинина Н. Е., Кузин Е. Н., Азопков С. В., Панкова Е. С. Титановый коагулянт для процессов водоочистки и водоподготовки // Успехи в химии и химической технологии. 2016. Т. 30. № 9. C. 84–86.
    Kruchinina N. E., Kuzin E. N., Azopkov S. V., Pankova E. S. [Titanium coagulant for water and wastewater treatment processes]. Uspekhi v Khimii i Khimicheskoi Tekhnologii, 2019, v. 30, no. 9, pp. 84–86. (In Russian).
  26. Yonghai Gan, Jingbiao Li, Li Zhang, et. al. Potential of titanium coagulants for water and wastewater treatment: Current status and future perspectives. Chemical Engineering Journal, 2021, v. 406, pp. 1–17. 126837. DOI: 10.1016/j.cej.2020.126837.
  27. Zhao Y., Gao B., Cao B., et. al. Comparison of coagulation behavior and floc characteristics of titanium tetrachloride (TiCl4) and polyaluminum chloride (PACl) with surface water treatment. Chemical Engineering Journal, 2011, v. 166, рр. 544–550. DOI: 10.1016/j.cej.2020.126837.
  28. Zhao Y., Gao B., Zhang G., et. al. Coagulation and sludge recovery using titanium tetrachloride as coagulant for real water treatment: A comparison against traditional aluminum and iron salts. Separation and Purification Technology, 2014, v. 130, pp. ­19–27. DOI: 10.1016/j.seppur.2014.04.015.
  29. Zhao Y., Gao B., Zhang G., et. al. Comparative study of floc characteristics with titanium tetrachloride against conventional coagulants: Effect of coagulant dose, solution pH, shear force and break-up period. Chemical Engineering Journal, 2013, v. 233, pp. 70–79. DOI: 10.1016/j.cej.2013.08.017.
  30. Okour Y., Shon H., El Saliby I. E. Characterisation of titanium tetrachloride and titanium sulfate flocculation in wastewater treatment. Materials Science, Engineering Water science and technology: a journal of the International Association on Water Pollution Research, 2009, v. 59.12, pp. 2463–2473. DOI: 10.2166/wst.2009.254.
  31. Duan J., Graham N. J. D., Wilson F. Coagulation of humic acid by ferric chloride in saline (marine) water conditions. Water Science and Technology, 2002, v. 47, no. 1, pp. 41–48. PMID: 12578172.
  32. Sanghyun Jeong, Arumugam Sathasivan, George Kastl, et. al. Experimental investigation and modeling of dissolved organic carbon removal by coagulation from seawater. Chemosphere, 2014, v. 95, pp. 310–316. DOI: 10.1016/j.chemosphere.2013.09.022.
  33. Sanghyun Jeong, Yosef Okour, Tien Vinh Nguyen, et. al. Ti-salt flocculation for dissolved organic matter removal in seawater. Desalination and Water Treatment, 2013, v. 51, pp. 3591–3596. DOI: 10.1080/19443994.2012.750811.
  34. Okour Y., El Saliby I., Shon H. K., et. al. Recovery of sludge produced from Ti-salt flocculation as pretreatment to seawater reverse osmosis. Desalination, 2009, v. 247, pp. 53–63. DOI: 10.1016/j.desal.2008.12.012.
  35. Anil Shrestha, Gayathri Naidu, Md. Abu Hasan Johir, et. al. Performance of flocculation titanium salts for seawater reverse osmosis pretreatment. Desalination and Water Treatment, 2017, v. 98, pp. 92–97. DOI: 10.5004/dwt.2017.21703.

Журнал ВСТ включен в новый перечень ВАК

Шлафман В. В. Проектирование под заданную ценность, или достижимая эффективность технических решений – что это?

Banner Kofman 1