№4|2025

DRINKING WATER SUPPLY

UDC 628.161.2
DOI 10.35776/VST.2025.04.02

Propol’skii Dmitrii

Filtering materials for de-ironing and demanganation of underground waters: selection criteria, varieties, and application environment (a review)

Summary

To ensure uninterrupted and high-quality water supply of cities and populated areas, complying with the requirements of the regulatory documents and standards is mandatory. Violating the standards during water treatment leads to rapid wear of water supply systems, and also produces a negative impact on human health while consuming poor-quality drinking water. Reducing the concentration of iron and manganese in drinking water is one of the most important tasks in water treatment in a number of countries. Based on a review of literary sources, the main criteria for selecting a filter media are considered; types of filtering materials used for underground water de-ironing and demanganation, and the application environment are described. Anthracite and activated carbon are the optimal filtering materials for the operation of filters. These natural materials with the properties studied are available, and widely used in water treatment processes. The synthesis of new catalytic filtering materials is promising for iron and manganese removal from groundwater. The variety of materials will allow changing the characteristics and morphology depending on the purposes of water treatment.

Key words

, , , , , , ,

For citation: Propol’skii D. E. Filtering materials for de-ironing and demanganation of underground waters: selection criteria, varieties, and application environment (a review). Vodosnabzhenie i Sanitarnaia Tekhnika, 2025, no. 4, pp. 10–19. DOI: 10.35776/VST.2025.04.02. (In Russian).

The further text is accessible on a paid subscription.
For authorisation enter the login/password.
Or subscribe

REFERENCES

  1. Corbera-Rubio F., Laureni M., Koudijs N., et. al. Meta-omics profiling of full-scale groundwater rapid sand filters explains stratification of iron, ammonium and manganese removals. Water Research, 2023, v. 233, article id. 119805.
  2. Choong T. S., Chuah T. G., Robiah Y., et. al. Arsenic toxicity, health hazards and removal techniques from water: an overview. Desalination, 2007, v. 217 (1–3), pp. 139–166.
  3. Aziz H. A., Tajarudin H. A., Wei T. H. L., Alazaiza M. Y. D. Iron and manganese removal from groundwater using limestone filter with iron-oxidized bacteria. International Journal of Environmental Science and Technology, 2020, v. 17, pp. 2667–2680.
  4. Cheng L. H., Xiong Z. Z., Cai S., Li D. W., Xu X. H. Aeration-manganese sand filter-ultrafiltration to remove iron and manganese from water: Oxidation effect and fouling behavior of manganese sand coated film. Journal of Water Process Engineering, 2020, v. 38, article id. 101621.
  5. Scholz M. Iron and manganese removal. Wetlands for water pollution control. Amsterdam, Netherlands, Elsevier, 2016, ch. 16, pр. 107–109.
  6. Vries D., Bertelkamp C., Kegel F. S., et. al. Iron and manganese removal: Recent advances in modelling treatment efficiency by rapid sand filtration. Water Research, 2017, v. 109, pp. 35–45.
  7. Hamer K., Gudenschwager I., Pichler T. Manganese (Mn) concentrations and the Mn-Fe relationship in shallow groundwater: implications for groundwater monitoring. Soil Systems, 2020, 4(3):49.
  8. Romanovski V., Romanovskaia E., Moskovskikh D., et al. Recycling of iron-rich sediment for surface modification of filters for underground water deironing. Journal of Environmental Chemical Engineering, 2021, v. 9 (4), article id. 105712.
  9. Yushchenko V., Velyugo E., Romanovski V. Influence of ammonium nitrogen on the treatment efficiency of underground water at iron removal stations. Groundwater for Sustainable Development, 2023, v. 22, article id. 100943. DOI: 10.1016/j.gsd.2023. 100943.
  10. Yushchenko V., Velyugo Е., Romanovski V. Development of a new design of deironing granulated filter for joint removal of iron and ammonium nitrogen from underground water. Environmental Technology, 2023, v. 1–8, DOI: 10.1080/09593330.2023. 2185820.
  11. Romanovskii V. I., Khort A. A. Modified anthracites for deironing of underground water. Journal of Water Chemistry and Technology, 2017, v. 39, pp. 299–304.
  12. Propolsky D., Romanovskaia E., Kwapinski W., Romanovski V. Modified activated carbon for deironing of underground water. Environmental Research, 2020, v. 182, article id. 108996.
  13. Romanovski V. New approach for inert filtering media modification by using precipitates of deironing filters for underground water treatment. Environmental Science and Pollution Research, 2020, v. 27 (25), pp. 31706–31714.
  14. Chaturvedi S., Dave P. N. Removal of iron for safe drinking water. Desalination, 2012, v. 303, pp. 1–11.
  15. Ramanovski V. I., Hurynovich A. D. New method of disinfecting water wells. 11th IWA Leading Edge Conference on Water and Wastewater Technologies. United Arab Emirates, Abu Dhabi. 26–29 May 2014. DOI: 10.13140/2.1.3079.7605.
  16. Hurynovich A., Ramanovski V. Artifisial replenishment of the deep aquifers. In E3S Web of Conferences. EDP Sciences, 2018, v. 45, article id. 00025.
  17. Пропольский Д. Э. Обзор достижений водоподготовки в области деферризации и деманганации подземных вод // Водоснабжение и санитарная техника. 2025. № 1. С. 18–26. DOI: 10.35776/VST.2025.01.03.
    Propol’skii D. E. [A review of achievements in water treatment with regard to deferrization and demanganation]. Vodosnabzhenie i Sanitarnaia Tekhnika, 2025, no. 1, pp. 18–26. DOI: 10.35776/VST.2025.01.03. (In Russian).
  18. Prapolski D., Romanovski V. Resent advances in underground water deironing and demanganization: comprehensive review. Journal of Water Process Engineering, 2025, v. 70, article id. 107089. DOI: 10.1016/j.jwpe.2025.107089.
  19. Клебеко П. А., Романовский В. И. Очистка подземных вод от железа с использованием модифицированных антрацитов // Весці Нацыянальнай акадэміі навук Беларусі. Серыя хiмiчных навук. 2017. № 3. С. 104–109.
    Klebeko P. A., Romanovski V. I. [Removing iron from underground water with the use of modified anthracites]. Vestsy Natsyianal’nai Akademii Navuk Belarusi. Chemical Sciences Series, 2017, no. 3, pp. 104–109.
  20. Клебеко П. А., Романовский В. И. Модифицированные антрациты –эффективные каталитические материалы для обезжелезивания подземных вод // Водоснабжение и санитарная техника. 2020. № 7. С. 24–29. DOI: 10.35776/MNP.2020.07.
    Klebeko P. A., Romanovski V. I. [Modified anthracites as effective catalytic materials for deironing of underground water]. Vodosnabzhenie i Sanitarnaia Tekhnika, 2020, no. 7, pp. 24–29. DOI: 10.35776/MNP.2020.07. (In Russian).
  21. Клебеко П. А., Романовский В. И. Влияние условий синтеза на фазовый состав модифицированного покрытия ант­рацитов для обезжелезивания подземных вод // Вестник Брестского государственного технического университета. Водохозяйственное строительство, теплоэнергетика и геоэкология. 2020. № 2. С. 65–67. DOI: 10.36773/1818-1212-2020-120-2.1-65-67.
    Klebeko P. A., Romanovskii V. I. [The effect of synthesis conditions on the phase composition of modifies anthracite coating for underground water de-ironing]. Vestnik Brestskogo Gosudarstvennogo Tekhnicheskogo Universiteta. Vodokhoziaistvennoe Stroitel’stvo, Teploenergetika i Geoekologiia, 2020, no. 2, pp. 65–67. DOI: 10.36773/1818-1212-2020-120-2.1-65-67. (In Russian).
  22. Haukelidsaeter S., et al. Efficient chemical and microbial removal of iron and manganese in a rapid sand filter and impact of regular backwash. Applied Geochemistry, 2024, v. 162, article id. 105904.
  23. Аюкаев Р. И., Мельцер В. З. Производство и применение фильтрующих материалов для очистки воды. – Л.: Строй­издат, 1985. 119 с.
    Aiukaev R. I., Mel’tser V. Z. Proizvodstvo i primenenie fil’truiushchikh materialov dlia ochistki vody [Production and application of filtering materials for water treatment. Leningrad, Stroiizdat Publ., 1985, 119 p.].
  24. Marsidi N., Hasan H. A., Abdullah S. R. S. A review of biological aerated filters for iron and manganese ions removal in water treatment. Journal of Water Process Engineering, 2018, v. 23, pp. 1–12.
  25. Яковлев С. В., Калицун В. И. Механическая очистка сточных вод. – М.: Стройиздат, 1972. 200 с.
    Iakovlev S. V., Kalitsun V. I. Mekhanicheskaia ochistka stochnykh vod [Mechanical treatment of wastewater. Moscow, Stroiizdat Publ., 1972, 200 p.].
  26. Бачериков И. В., Локштанов Б. М. Определение угла естественного откоса сыпучих материалов // Известия Санкт-Петербургской лесотехнической академии. 2016. № 214. С. 167–177.
    Bacherikov I. V., Lokshtanov B. M. [Determining the angle of natural slope of bulk materials]. Izvestiia Sankt-Peterburgskoi Lesotekhnicheskoi Akademii, 2016, no. 214, pp. 167–177. (In Russian).
  27. Gregg S. J., Sing K. S. W. Adsorption, surface area and porosity: second edition. London, Academic Press, 1982, 303 p.
  28. Пат. 2700800, РФ. Способ и устройство для определения механической прочности фильтрующих материалов / Пантелеев А. А., Рябчиков Б. Е., Ларионов С. Ю., Шилов М. М., Касаточкин А. С., Свиридов А. О., Смирнов В. Б. // Изобретения. Полезные модели. 2019. № 27.
    Panteleev A. A., Riabchikov B. E., Larionov S. Iu., Shilov M. M., Kasatochkin A. S., Sviridov A. O., Smirnov V. B. [Pat. 2700800, RF. Method and device for determining the mechanical strength of filter materials. Izobreteniia. Poleznye Modeli, 2019, no. 27. (In Russian).
  29. Гурвич С. М., Кострикин Ю. М. Оператор водоподготовки. – М.: Энергоиздат, 1981. 304 с.
    Gurvich S.M., Kostrikin Iu.M. Operator vodopodgotovki [Water treatment operator. Moscow, Energoizdat Publ., 1981, 304 p.].
  30. Cescon A., Jiang J. Q. Filtration process and alternative filter media material in water treatment. Water, 2020, v. 12, no. 12, article id. 3377.
  31. Barloková D., Ilavský J. Modified clinoptilolite in the removal of iron and manganese from water. Slovak Journal of Civil Engineering, 2012, v. 20, no. 3, pp. 1–8.
  32. Michel M. M., et. al. Mineral materials coated with and consisting of MnOx – characteristics and application of filter media for groundwater treatment: a review. Materials, 2020, v. 13, no. 10, article id. 2232.
  33. Araya-Obando J. A., et. al. Start-up of bench-scale biofilters for manganese removal under tropical conditions: a comparative study using virgin pumice, silica sand, and anthracite filter media. Environmental Science: Water Research & Technology, 2021, v. 7, no. 8, pp. 1504–1515.
  34. Hatt B. E., Fletcher T. D., Deletic A. Treatment performance of gravel filter media: Implications for design and application of stormwater infiltration systems. Water Research, 2007, v. 41, no. 12, pp. 2513–2524.
  35. Tekerlekopoulou A. G., Vayenas D. V. Ammonia, iron and manganese removal from potable water using trickling filters. Desalination, 2007, v. 210, no. 1–3, pp. 225–235.
  36. Wang Y., Sikora S., Townsend T. G. Ferrous iron removal by limestone and crushed concrete in dynamic flow columns. Journal of Environmental Management, 2013, v. 124, pp. 165–171.
  37. Komnitsas K., Bartzas G., Paspaliaris I. Efficiency of limestone and red mud barriers: laboratory column studies. Minerals Engineering, 2004, v. 17, no. 2, pp. 183–194.
  38. Gabelich C. J., et. al. Manganese desorption from filter media: Experiences with biological filtration. Proc. 2005 AWWA Ann. Conf., San Francisco, 2005.
  39. Akbar N. A., Aziz H. A., Alazaiza M. Y. D. Effectiveness of Fe, Mn, UV 254 and colour removal from pre-ozonated groundwater using anthracite coal. International Journal of Environmental Research, 2021, v. 15, pp. 245–259.
  40. Thomaz K. T. C., et. al. Removal of Fe and Mn ions from groundwater using activated carbon obtained from waste products of Brazil nut and andiroba cultivation in the Amazon region. Sustainable Materials and Technologies, 2023, v. 38, article id. e00737.
  41. Okoniewska E., et. al. The removal of manganese, iron and ammonium nitrogen on impregnated activated carbon. Desalination, 2007, v. 206, no. 1–3, pp. 251–258.
  42. Noubactep C., Caré S. Enhancing sustainability of household water filters by mixing metallic iron with porous materials. Chemical Engineering Journal, 2010, v. 162, no. 2, pp. 635–642.
  43. Dalai C., Jha R., Desai V. R. Rice husk and sugarcane baggase based activated carbon for iron and manganese removal. Aquatic Procedia, 2015, v. 4, pp. 1126–1133.
  44. bin Jusoh A., et. al. Study on the removal of iron and manganese in groundwater by granular activated carbon. Desalination, 2005, v. 182, no. 1–3, pp. 347–353.
  45. Aji M. M., Gutti B., Highina B. K. Application of activated carbon in removal of iron and manganese from Alau Dam water in Maiduguri. Colomban Journal of Life Sciences, 2015, v. 17, no. 1, pp. 35–39.
  46. Hawash H. B. I., et. al. Innovative comparable study for application of iron oxyhydroxide and manganese dioxide modified clinoptilolite in removal of Zn (II) from aqueous medium. Journal of Environmental Chemical Engineering, 2018, v. 6, no. 5, pp. 6489–6503.
  47. Outram J. G., Couperthwaite S. J., Millar G. J. Ferrous poisoning of surface MnO2 during manganese greensand operation. Journal of Environmental Chemical Engineering, 2017, v. 5, no. 3, pp. 3033–3043.
  48. Hameed S., Awad H. A., Al-Uqaily R. A. H. Removal of iron and manganese from ground water by different techniques. The Journal of Research on the Lepidoptera, 2019, v. 50, no. 4, pp. 458–468.
  49. Piispanen J. K., Sallanko J. T. Mn (II) removal from groundwater with manganese oxide-coated filter media. Journal of Environmental Science and Health. Part A, 2010, v. 45, no. 13, pp. 1732–1740.
  50. Crittenden J. C., et. al. MWH’s water treatment: principles and design. John Wiley & Sons, Inc., 2012, 1906 p.
  51. Villinski J. E., Saiers J. E., Conklin M. H. The effects of reaction-product formation on the reductive dissolution of MnO2 by Fe (II). Environmental Science & Technology, 2003, v. 37, no. 24, pp. 5589–5596.
  52. Пропольский Д. Э., Романовский В. И. Полифункциональный модифицированный уголь для очистки подземных вод // Водное хозяйство России: проблемы, технологии, управление. 2020. № 4. С. 103–111. DOI: 10.35567/1999-4508-2020-4-7.
    Propol’skii D. E., Romanovskii V. I. [Polyfunctional modified carbon for undergroundwater purification]. Vodnoe Khoziaistvo Rossii: Problemy, Tekhnologii, Upravlenie, 2020, no. 4, pp. 103–111. DOI: 10.35567/1999-4508-2020-4-7. (In Russian).
  53. Пропольский Д. Э., Романовский В. И., Романовская Е. В. Модифицированный активированный уголь для обезжелезивания подземных вод // Вестник Брестского государственного технического университета. Водохозяйственное стро­тельство, теплоэнергетика и геоэкология. 2019. № 2. С. 47–50.
    Propol’skii D. E., Romanovskii V. I., Romanovskaia E. V. [Modifies activated carbon for underground water de-ironing]. Vestnik Brestskogo Gosudarstvennogo Tekhnicheskogo Universiteta. Vodokhoziaistvennoe Stroitel’stvo, Teploenergetika i Geoekologiia, 2019, no. 2, pp. 47–50. (In Russian).
  54. Пропольский Д. Э., Романовский В. И. Эффективность обезжелезивания подземных вод с использованием модифицированных каталитических материалов // Технологія–2019: матеріали XХІІ Міжнар. наук.-техн. конф., 26–27 квіт. 2019 р., м. Сєвєродонецьк: в 2 ч. – Сєвєродонецьк: Східноукр. нац. ун-т ім. В. Даля, 2019. Ч. 1. С. 85–86.
    Propol’skii D. E., Romanovskii V. I. [Efficiency of iron removal from groundwater using modified catalytic materials]. Technology–2019. Proceedings of the XХІІ International Scientific-Technical Conference, 2019, Severodonetsk, Eastern Ukraine National University named after V. Dal’, 2019, part 1, pp. 85–86. (In Russian).
  55. Клебеко П. А., Романовский В. И. Обезжелезивание подземных вод модифицированным огнеупорным шамотом // Водное хозяйство России: проблемы, технологии, управление. 2021. № 4. С. 103–111. DOI: 10.35567/1999-4508-2021-4-8.
    Klebeko P. A., Romanovskii V. I. [De-ironing of underground water with modified refractory chamotte]. Vodnoe Khoziaistvo Rossii: Problemy, Tekhnologii, Upravlenie, 2021, pp. 4, pp. 103–111. DOI: 10.35567/1999-4508-2021-4-8. (In Russian).
  56. Горелая О. Н., Романовский В. И. Влияние дозы восстановителя на свойства магнитных сорбентов из осадков станций обезжелезивания // Водоснабжение и санитарная техника. 2022. № 1. С. 32–37. DOI: 10.35776/VST.2022.01.05.
    Gorelaia O. N., Romanovskii V. I. [Effect of the dose of the reducing agent on the properties of magnetic sorbents from the deironing plant wastes]. Vodosnabzhenie i Sanitarnaia Tekhnika, 2022, no. 1, pp. 32–37. DOI: 10.35776/VST.2022.01.05. (In Russian).
  57. Романовский В. И., Клебеко П. А., Романовская Е. В. Очистка промывных вод станций обезжелезивания с использованием отходов водоподготовки // Вестник Брестского государственного технического университета. Водохозяйственное строительство, теплоэнергетика и геоэкология. 2018. № 2 (104). С. 90–92.
    Romanovskii V. I., Klebeko P. A., Romanovskaia E. V. [Purification of wash water from iron removal stations using water treatment waste]. Vestnik Brestskogo Gosudarstvennogo Tekhnicheskogo Universiteta. Vodokhoziaistvennoe Stroitel’stvo, Teploenergetika i Geoekologiia, 2018, no. 2 (104), pp. 90–92. (In Russian).

Журнал ВСТ включен в новый перечень ВАК

Шлафман В. В. Проектирование под заданную ценность, или достижимая эффективность технических решений – что это?

Banner Kofman 1