№2|2025

WATER TREATMENT

UDC 628.165
DOI 10.35776/VST.2025.02.03

Vurdova Nadezhda

Comparing the methods of reverse osmosis and electrodialysis in the process of natural and waste water demineralization

Summary

Water demineralization plays a key role in various industries, including energy, chemical and food industries, as well as in wastewater treatment to provide for a closed water recycling systems. The main methods of demineralization are reverse osmosis and electrodialysis. A comparative analysis of these methods is carried out in terms of their efficiency, cost-effectiveness, environmental safety and applicability in wastewater treatment. Particular attention is paid to the mechanism of the processes, energy costs, operational characteristics and requirements to water pre-treatment. Three key criteria are established needed to compare both methods considered: the need for water pre-treatment, the membrane replacement frequency, and the energy intensity of the process.

Key words

, , , , ,

For citation: Vurdova N. G. Comparing the methods of reverse osmosis and electrodialysis in the process of natural and waste water demineralization. Vodosnabzhenie i Sanitarnaia Tekhnika, 2025, no. 2, pp. 23–28. DOI: 10.35776/VST.2025.02.03. (In Russian).

The further text is accessible on a paid subscription.
For authorisation enter the login/password.
Or subscribe

REFERENCES

  1. Рябчиков Б. Е. Современные методы подготовки воды для промышленного и бытового использования. – М.: Де Ли принт, 2004. 304с.
    Riabchikov B. E. Sovremennye metody podgotovki vody dlia promyshlennogo i bytovogo ispol’zovaniia [Advanced methods of water preparation for industrial and domestic use. Moscow, De Li print Publ., 2004, 304 p.].
  2. Технический справочник по обработке воды. Degrémont: перевод с французского, в 2 т. Под редакцией М. И. Алексеева, В. Г. Иванова, А. М. Курганова и др. – СПб.: Новый журнал, 2007.
    Tekhnicheskii spravochnik po obrabotke vody Degrémont [Degrémont Technical manual on water treatment. Translated from French, in 2 v. Edited by M. I. Alekseev, V. G. Ivanov, A. M. Kurganov, et. al. Saint-Petersburg, Novyi Zhurnal Publ., 2007].
  3. Salgot M., Folch M. Wastewater treatment and water reuse. Current Opinion in Environmental Science & Health, 2018, v. 2, pp. 64–74. DOI: 10.1016/j.coesh.2018.03.005.
  4. Беликов С. Е. Водоподготовка: справочник. – М.: Аква-Терм, 2007. 240 с.
    Belikov S. E. Vodopodgotovka: spravochnik [Water treatment. Reference book. Moscow, Akva-Term Publ., 2007, 240 p.].
  5. Tanaka Y. Ion exchange membranes: fundamentals and applications. Elsevier, 2015, 546 p.
  6. Заболоцкий В. И., Никоненко В. В. Перенос ионов в мембранах. – М.: Наука, 1996. 400 с.
    Zabolotskii V. I., Nikonenko V. V. Perenos ionov v membranakh [Ion transport in membranes. Moscow, Nauka Publ., 1996, 400 p.].
  7. Ostwald W. Elektrische eigenschaften halbdurchlässiger scheidewände. Zeitschrift für Physikalische Chemie, 1890, v. 6, is. 1. DOI: 10.1515/ZPCH-1890-0109.
  8. Donnan F. G. Theory of membrane equilibrium in presence of a non-dialyzable electrolyte. Journal of the Electrochemical Society, 1911, v. 17, pp. 572– 581.
  9. Mareev S., Gorobchenko A., Ivanov D., Anokhin D., Nikonenko V. Ion and water transport in ion-exchange membranes for power generation systems: guidelines for modeling. International Journal of Molecular Sciences, 2023, v. 24, p. 34. DOI: 10.3390/ijms24010034.
  10. Копылов A. C., Лавыгин В. М., Очков В. Ф. Водоподготовка в энергетике. – М.: МЭИ, 2003. 310 с.
    Kopylov A. S., Lavygin V. M., Ochkov V. F. Vodopodgotovka v energetike [Water treatment in energetics. Moscow, MEI Publ., 2003, 310 p.].
  11. Baker R. W. Membrane technology and application. New York, John Wiley and Sons, 2004, 552 p.
  12. Первов А. Г., Чухин В. А., Михайлин А. В. Расчет, проектирование и применение электродиализных (электромембранных) установок по деминерализации воды. – М.: МГСУ, 2012. 88 с.
    Pervov A. G., Chukhin V. A., Mikhailin A. V. Raschet, proektirovanie i primenenie elektrodializnykh (elektromembrannykh) ustanovok po demineralizatsii vody [Calculation, design and application of electrodialysis (electromembrane) units for water demineralization. Moscow, MGSU Publ., 2012, 88 p.].
  13. Заболоцкий В. И., Березина Н. П., Никоненко В. В., Шудренко А. А. Развитие мембранных технологий на основе элект­родиализа в России // Наука Кубани. 2010. № 3. С. 4–10.
    Zabolotskii V. I., Berezina N. P., Nikonenko V. V., Shudrenko A. A. [Development of membrane technologies based on electrodialysis in Russia]. Nauka Kubani, 2010, no. 3, pp. 4–10. (In Russian).
  14. Strathmann H. Electrodialysis, a mature technology with a multitude of new applications, Desalination, 2010, v. 264, is. 3, pp. 268–288. DOI: 10.1016/J.DESAL.2010.04.069.
  15. Pismenskaya N. D., Pokhidnia E. V., Pourcelly G., Nikonenko V. V. Can the electrochemical performance of heterogeneous ion-exchange membranes be better than that of homogeneous membranes? Journal of Membrane Science, 2018, v. 566, pp. 54–68. DOI: 10.1016/j.memsci.2018.08.055.
  16. Pilat В. V. A case for electrodialysis. Asian Journal of Water, Environment and Pollution, 2000, v. 16, no. 9, pp. 22–25.
  17. Dupont. Техническое руководство по мембранам обратного осмоса/нанофильтрации [электронный ресурс]. https://www.dupont.com/resource-center.html?BU=water-solutions.
    Dupont. Tekhnicheskoe rukovodstvo po membranam obratnogo osmosa/nanofil’tratsii [Dupont. Technical manual for reverse osmosis/nanofiltration membranes]. https://www.dupont.com/resource-center.html?BU=water-solutions.
  18. Nikonenko V. V., Pismenskaya N. D., Belova E. I., Sistat P., Huguet P., Pourcelly G., Larchet C. Intensive current transfer in membrane systems: Modelling, mechanisms and application in electrodialysis. Advances in Colloid and Interface Science, 2010, v. 160 (1–2), pp. 101–123. DOI: 10.1016/j.cis.2010.08.001.
  19. Козадерова О. А. Научные основы и технологическое применение электродиализа водных растворов, содержащих сильные и слабые электролиты: Дисс. … доктора химических наук. – Тамбов, 2019. 273 с.
    Kozaderova O. A. Nauchnye osnovy i tekhnologicheskoe primenenie elektrodializa vodnykh rastvorov, soderzhashchikh sil’nye i slabye elekrolity [Scientific basis and technological application of electrodialysis of aqueous solutions containing strong and weak electrolytes. A thesis for a Doctor’s of Chemistry degree. Tambov, 2019, 273 p.].
  20. Baker R. W. Membrane technology and application. New York, John Wiley and Sons, 2004, 552 p.
  21. Bazinet L., Geoffroy T. R. Electrodialytic processes: market overview, membrane phenomena, recent developments and sustainable strategies. Membranes, 2020, v. 10, p. 221. DOI: 10.3390/membranes10090221.
  22. Пат. 2083268 C1, РФ. МПК B01D 61/42. Способ очистки электролита хромирования / Вурдова Н. Г., Фомичев В. Т. // Изобретения. Полезные модели. 1997.
    Vurdova N. G., Fomichev V. T. [Pat. 2083268 C1, RF. IPC B01D 61/42. Method of cleaning chromium plating electrolyte. Izobreteniia. Poleznye Modeli, 1997. (In Russian).
  23. Озеров А. М., Кривцов А. К., Хамаев В. А. и др. Нестационарный электролиз. – Волгоград: Нижне-Волжское книжное издательство, 1972. 160 с.
    Ozerov A. M., Krivtsov A. K., Khamaev V. A., et. al. Nestatsionartnyi elektroliz [Non-stationary electrolysis. Volgograd, Lower Volga Book Publ., 1972, 160 p.].
  24. Zhao D., Lee L. Yoke, Ong S. Leong, Chowdhury P., Siah K. Boon, Ng H. Yong. Electrodialysis reversal for industrial reverse osmosis brine treatment. Separation and Purification Technology, 2018, v. 213, pp. 339–347. DOI: 10.1016/j.seppur.2018.12.056.
  25. Вурдова Н. Г., Фесенко Л. Н. Повышение эффективности систем оборота воды нефтеперерабатывающих и нефтехимических предприятий (часть 2) // Водоснабжение и санитарная техника. 2023. № 10. С. 37–47. DOI: 10.35776/VST.2023.10.05.
    Vurdova N. G., Fesenko L. N. [Improving the efficiency of water recycling systems at oil refineries and petrochemical enterprises (part 2)]. Vodosnabzhenie i Sanitarnaia Tekhnika, 2023, no. 10, pp. 37–47. DOI: 10.35776/VST.2023.10.05. (In Russian).

Журнал ВСТ включен в новый перечень ВАК

Шлафман В. В. Проектирование под заданную ценность, или достижимая эффективность технических решений – что это?

Banner Kofman 1