№3|2025
WASTEWATER SYSTEMS
UDC 628.221
DOI 10.35776/VST.2025.03.05
Justification of the optimum alternative of the wastewater disposal system of St. Petersburg adapting to the conditions of the joint effect of urbanization and climate change.
Part 1. Program-method for justification of the optimal alternative
Summary
The wastewater disposal system of Saint-Petersburg has been operating under the conditions that differ from the design ones owing to main reasons. The first reason is the process of urbanization that involves water flow rate decreasing in dry weather because of the water consumption reduction, and water flow rate increasing during rainy periods due to the increasing share of watertight coverages. The second reason is the increasing intensity and frequency of rain showers. In this regard, adapting the wastewater disposal system to the conditions that arise under the joint effect of urbanization and climate change became a necessity. The consequence of the new operating conditions is the presence of two undesirable phenomena: flooding of territories and overflows of storm drains, emergency outfalls, emergency outlets and bypass lines of the treatment facilities. Justification of the optimal solution for adapting the Saint-Petersburg wastewater disposal system to the conditions of the joint effect of urbanization and climate change should provide for the solution of a double criterion optimization problem: search for an economically feasible option for the system reconstruction to eliminate floodings in the city during rainfall with a frequency of Р > Рopt; search for an economically feasible option to ensure minimal discharges through overflows during rainfall with a frequency of Р > Рopt during the operation after the reconstruction. From a mathematical point of view, the search for an economically justified reconstruction option comes down to determining such a period of rain frequency Popt, where one of two equivalent conditions is met: either the minimum cost of damage from flooding and the cost of preventing it is achieved; or the maximum difference between the amount of prevented damage from flooding and the costs of preventing it is achieved.
Key words
territory underflooding , surface runoff disposal system , adaptation measures , calculated parameters of rains , urbanization , climate change
For citation: Volkov S. N., Luk’ianchuk M. Iu., Zhukova A. G., Solokhin A. A., Kuz’min V. A., Zhitenev A. I., Rublevskaia O. N., Gvozdev V. A., Erofeev V. V., Kostenko I. G., Ignatchik V. S., Ignatchik S. Iu., Kuznetsova N. V., Seniukovich M. A., Eshchenko A. N. Justification of the optimum alternative of the wastewater disposal system of St. Petersburg adapting to the conditions of the joint effect of urbanization and climate change. Part 1. Program-method for justification of the optimal alternative. Vodosnabzhenie i Sanitarnaia Tekhnika, 2025, no. 3, pp. 42–50. DOI: 10.35776/VST.2025.03.05. (In Russian).
The further text is accessible on a paid subscription.
For authorisation enter the login/password.
Or subscribe
REFERENCES
- Волков С. Н., Лукьянчук М. Ю., Житенев А. И., Рублевская О. Н., Ерофеев В. В., Игнатчик В. С., Игнатчик С. Ю., Кузнецова Н. В. Системы отведения поверхностного стока: проблемы и решения // Водоснабжение и санитарная техника. 2022. № 7. С. 53–60. DOI: 10.35776/VST.2022.07.07.
Volkov S. N., Luk’ianchuk M. Iu., Zhitenev A. I., Rublevskaia O. N., Erofeev V. V., Ignatchik V. S., Ignatchik S. Iu., Kuznetsova N. V. [Systems for the removal of surface runoff: problems and solutions]. Vodosnabzhenie i Sanitarnaia Tekhnika, 2022, no. 7, pp. 53–60. DOI: 10.35776/VST.2022.07.07. (In Russian). - Игнатчик В. С., Игнатчик С. Ю., Кузнецова Н. В., Феськова А. Я. Влияние изменений климата на гидравлические режимы систем отведения поверхностного стока // Вода и экология: проблемы и решения. 2020. № 4 (84). C. 50–57.
Ignatchik V. S., Ignatchik S. Iu., Kuznetsova N. V., Fes’kova A. Ia. [The effect of the climate change on the hydraulic systems of surface runoff disposal regimes]. Voda i Ekologiia: Ptoblemy i Resheniia, 2020, no. 4 (84), pp. 50–57. (In Russian). - Волков С. Н., Житенев А. И., Рублевская О. Н., Костенко И. Г., Игнатчик В. С., Игнатчик С. Ю., Кузнецова Н. В., Сенюкович М. А. Особенности оценки расчетных интенсивностей дождей с учетом экстремальных ливней // Водоснабжение и санитарная техника. 2021. № 7. С. 50–55. DOI: 10.35776/VST.2021.07.07.
Volkov S. N., Zhitenev A. I., Rublevskaia O. N., Kostenko I. G., Ignatchik V. S., Ignatchik S. Iu., Kuznetsova N. V., Seniukovich M. A. [Specific features of estimating calculated rainfall rates with account of extreme rain showers]. Vodosnabzhenie i Sanitarnaia Tekhnika, 2021, no. 7, pp. 50–55. DOI: 10.35776/VST.2021.07.07. (In Russian). - Третий оценочный доклад об изменениях климата и их последствиях на территории Российской Федерации. Общее резюме. – СПб.: Наукоемкие технологии, 2022. 124 с.
Tretii otsenochnyi doklad ob izmeneniiakh klimata i ikh posledstviiakh na territorii Rossiiskoi Federatsii. Obshchee reziume [Third estimative report on climate change and its consequences in the Russian Federation. General summary. Saint-Petersburg, Naukoemkie Tekhnologii Publ., 2022, 124 p.]. - Jagai J. S., Li Q., Wang S., Messier K. P., Wade T. J., Hilborn E. D. Extreme precipitation and emergency room visits for gastrointestinal illness in areas with and without combined sewer systems: An analysis of Massachusetts data, 2003–2007. Environmental Health Perspectives, 2018, v. 123 (9), pp. 873–879. DOI: 10.1289/ehp.1408971.
- Willems P. Revision of urban drainage design rules after assessment of climate change impacts on precipitation extremes at Uccle, Belgium. Journal of Hydrology, 2013, v. 496, pp. 166–177. DOI: 10.1016/j.jhydrol.2013.05.037.
- Quaranta E., Fuchs S., Liefting H. J., Schellart A., Pistocchi A. A hydrological model to estimate pollution from combined sewer overflows at the regional scale. Application to Europe. Journal of Hydrology: Regional Studies, 2022, v. 41, article id. 101080. DOI: 10.1016/j.ejrh.2022.101080.
- Волков С. Н., Лукьянчук М. Ю., Житенев А. И., Кузьмин В. А., Рублевская О. Н., Хямяляйнен М. М., Гвоздев В. А., Ерофеев В. В., Костенко И. Г., Игнатчик В. С., Игнатчик С. Ю., Кузнецова Н. В., Сенюкович М. А. Методы и результаты оценки параметров расчетных дождей для систем водоотведения поверхностного стока Санкт-Петербурга. Часть 1. Для гидравлических расчетов при проектировании // Водоснабжение и санитарная техника. 2023. № 3. С. 53–60. DOI: 10.35776/VST.2023.03.07.
Volkov S. N., Luk’ianchuk M. Iu., Zhitenev A. I., Kuz’min V. A., Rublevskaia O. N., Khiamialiainen M. M., Gvozdev V. A., Erofeev V. V., Kostenko I. G., Ignatchik V. S., Ignatchik S. Iu., Kuznetsova N. V., Seniukovich M. A. [Methods and results of estimating calculated rain parameters for the surface runoff disposal systems of Saint-Petersburg. Part 1. For hydraulic calculations while designing]. Vodosnabzhenie i Sanitarnaia Tekhnika, 2023, no. 3, pp. 53–60. DOI: 10.35776/VST.2023.03.07. (In Russian). - Волков С. Н., Лукьянчук М. Ю., Житенев А. И., Кузьмин В. А., Рублевская О. Н., Гвоздев В. А., Ерофеев В. В., Костенко И. Г., Игнатчик В. С., Игнатчик С. Ю., Кузнецова Н. В., Сенюкович М. А. Методы и результаты оценки параметров расчетных дождей для систем водоотведения поверхностного стока Санкт-Петербурга. Часть 2. Для гидравлических расчетов при моделировании // Водоснабжение и санитарная техника. 2023. № 4. С. 53–60. DOI: 10.35776/VST.2023.04.07.
Volkov S. N., Luk’ianchuk M. Iu., Zhitenev A. I., Kuz’min V. A., Rublevskaia O. N., Gvozdev V. A., Erofeev V. V., Kostenko I. G., Ignatchik V. S., Ignatchik S. Iu., Kuznetsova N. V., Seniukovich M. A. [Methods and results of estimating calculated rain parameters for the surface runoff disposal systems of Saint-Petersburg. Part 2. For hydraulic calculations in simulation]. Vodosnabzhenie i Sanitarnaia Tekhnika, 2023, no. 4, pp. 53–60. DOI: 10.35776/VST.2023.04.07. (In Russian). - Волков С. Н., Лукьянчук М. Ю., Жукова А. Г., Житенев А. И., Кузьмин В. А., Рублевская О. Н., Гвоздев В. А., Ерофеев В. В., Костенко И. Г., Игнатчик В. С., Игнатчик С. Ю., Кузнецова Н. В., Феськова А. Я. Методы и результаты оценки параметров расчетных дождей для систем водоотведения поверхностного стока Санкт-Петербурга. Часть 3. Для гидравлических расчетов при проектировании и моделировании с учетом неравномерности распределения интенсивностей дождей по площади // Водоснабжение и санитарная техника. 2023. № 6. С. 35–42. DOI: 10.35776/VST.2023.06.05.
Volkov S. N., Luk’ianchuk M. Iu., Zhukova A.G., Zhitenev A. I., Kuz’min V. A., Rublevskaia O. N., Gvozdev V. A., Erofeev V. V., Kostenko I. G., Ignatchik V. S., Ignatchik S. Iu., Kuznetsova N. V., Fes’kova A. Ia. [Methods and results of estimating calculated rain parameters for the surface runoff disposal systems of Saint-Petersburg. Part 3. For hydraulic calculations in designing and modeling with account of the uneven distribution of rain intensities areally]. Vodosnabzhenie i Sanitarnaia Tekhnika, 2023, no. 6, pp. 35–42. DOI: 10.35776/VST.2023.06.05. (In Russian). - Madsen H., Lawrence D., Lang M., Martinkova M., Kjeldsen T. R. Review of trend analysis and climate change projections of extreme precipitation and floods in Europe. Journal of Hydrology, 2014, v. 519, pp. 3634–3650.
- Combined sewer overflows guidance for nine minimum controls. EPA 832-B-95-003. United States Environmental Protection Agency. Washington, D. C., May 1995.
- Combined sewer overflows guidance for long-term control plan. EPA 832-B-95-002. United States Environmental Protection Agency. Washington, D. C., September 1995.
- Combined sewer overflows. A challenge for policy makers and the water sector. EurEau Commission 2 on waste water. 1 February 2016. Storm water overflows. Commission Study. European Commission Directorate General for Environment Unit C.2 Marine Environment & Water Industry Bruno Rakedjian/Els De Roeck.
- Kim H., Shim I., Lee D., Hong B., Kim H., Lee S., Hwang T. M. Application of radial type multifiber media filtration process for combined sewer overflow treatment. Applied Sciences, 2023, v. 13 (6), pp. 3647. DOI: 10.3390/app13063647.
- Sewerage measures (in Japanese). Ministry of Land, Infrastructure, Transport, and Tourism. Tokyo, Japan, 2019.
- Chinese statistical yearbook of urban and rural construction. Ministry of Housing and Urban-Rural Development, the People’s Republic of China, Beijing, 2022. https://www.mohurd.gov.cn/gongkai/fdzdgknr/sjfb/index.html.
- Xu Z. X., Xu J., Yin H. L., Jin W., Li H. Z., He Z. Urban river pollution control in developing countries. Nature Sustainability, 2019, v. 2 (3), pp. 158–160. DOI: 10.1038/s41893-019-0249-7.
- Freni G., la Loggia G., Notaro V. Uncertainty in urban flood damage assessment due to urban drainage modeling and depth-damage curve estimation. Water Science and Technology, 2010, v. 61, pp. 2979–2993.
- De Moel H., Aerts J. C. H. Effect of uncertainty in land use, damage models and inundation depth on flood damage estimates. Natural Hazards, 2011, v. 58, pp. 407–425.
- Paoletti A. Sistemi di fognatura e di drenaggio urbano – Fondamenti e nuove tendenze. 2nd ed., C.U.S.L., Milan, 1996.
- Huizinga J., de Moel H., Szewczyk W. How to cite this report: Global flood depth-damage functions. Methodology and the database with guidelines. EUR 28552 EN, 2017. DOI: 10.2760/16510.