№4|2025
SURFACE RUNOFF TREATMENT
UDC 628.32:66.081.63
DOI 10.35776/VST.2025.04.07
Minimizing the flow of the membrane unit concentrate
in the process of surface runoff and drain water treatment and reuse
Summary
Possible treatment of surface runoff and drain water collected from the territory of an industrial enterprise using the method of reverse osmosis and nanofiltration is studied. Reuse of effluents provides for eliminating the payment for the environmental damage resulting from discharges into surface water bodies. The studies on determining the possible use of a membrane nanofiltration system for surface runoff and drain water treatment and reuse in preparing feedwater for water-heating boilers are described. An important characteristic of the technology is the minimum acceptable flow of membrane unit concentrate discharged into the sewer. The results of experiments are presented that provide for determining the intensity of calcium carbonate crystallization in the channels of membrane units, as well as the results of studying with a scanning electron microscope the formation of crystals in the concentrate flow.
Key words
reverse osmosis , nanofiltration , scaling on membranes , surface runoff and drain water of industrial sites , water treatment schemes with membrane use , reducing concentrate flow in reverse osmosis units
For citation: Pervov A. G., Spitsov D. V., Kulagina A. S., Tet Zo Aung. Minimizing the flow of the membrane unit concentrate in the process of surface runoff and drain water treatment and reuse. Vodosnabzhenie i Sanitarnaia Tekhnika, 2025, no. 4, pp. 51–60. DOI: 10.35776/VST.2025.04.07. (In Russian).
The further text is accessible on a paid subscription.
For authorisation enter the login/password.
Or subscribe
REFERENCES
- Первов А. Г., Андрианов А. П. Механизм действия ингибиторов при образовании осадка карбоната кальция в обратноосмотических аппаратах // Водоснабжение и санитарная техника. 2019. № 9. С. 10–22. DOI: 10.35776/MNP.2019.09.02.
Pervov A. G., Andrianov A. P. [The mechanisms of action of inhibitors in the process of calcium carbonate precipitate formation in reverse osmosis apparatus]. Vodosnabzhenie i Sanitarnaia Tekhnika, 2019, no. 9, pp. 10–22. DOI: 10.35776/MNP.2019.09.02. (In Russian). - Головесов В. А., Рудакова Г. Я., Первов А. Г., Спицов Д. В. Выбор мембран и сервисных реагентов для мембранных установок, применяемых для обработки подземных вод // Вестник МГСУ. 2020. Т. 15. Вып. 11 (146). С. 1556–1569. DOI: 10.22227/1997-0935.2020.11.1556-1569.
Golovesov V. A., Rudakova G. Ia., Pervov A. G., Spitsov D. V. [Choosing membranes and service chemicals for membrane units used for underground water treatment]. Vestnik MGSU, 2020, v. 15, is. 11 (146), pp. 1556–1569. DOI: 10.22227/1997-0935.2020.11.1556-1569. (In Russian). - Первов А. Г., Андрианов А. П., Юрчевский Е. Б. Совершенствование конструкций мембранных аппаратов // Водоснабжение и санитарная техника. 2009. № 7. С. 62–68.
Pervov A. G., Andrianov A. P., Iurchevskii E. B. [Improving the design of membrane apparatuses]. Vodosnabzhenie i Sanitarnaia Tekhnika, 2009, no. 7, pp. 62–68. (In Russian). - Первов А. Г., Рудакова Г. Я., Ефремов Р. В. Разработка программ для технологического расчета систем обратного осмоса и нанофильтрации с использованием реагентов «Аминат» // Водоснабжение и санитарная техника. 2009. № 7. С. 21–28.
Pervov A. G., Rudakova G. Ia., Efremov R. V. [Developing software for engineering design of reverse osmosis and nanofiltration systems with the use of Aminat chemicals]. Vodosnabzhenie i Sanitarnaia Tekhnika, 2009, no. 7, pp. 21–28. (In Russian). - Первов А. Г., Андрианов А. П., Ефремов Р. В., Головесов В. А. Новая технология сокращения расхода концентрата установок обратного осмоса // Мембраны и мембранные технологии. 2021. Вып. 11. № 3. С. 202–210.
Pervov A. G., Andrianov A. P., Efremov R. V., Golovesov V. A. [A new technology of reducing concentrate flow of reverse osmosis units]. Membranes and Membrane Technologies, 2021, is. 11, no. 3, pp. 202–210. (In Russian). - Первов А. Г. Новые решения для сокращения расходов концентратов мембранных систем водоподготовки с применением нанофильтрационных мембран / Современные технологии водоподготовки и защиты оборудования от коррозии и накипеобразования: Сборник докладов X юбилейной научно-практической конференции. 31 октября 2023 г. С. 43–78.
Pervov A. G. [New solutions for reducing the concentrate flow in membrane water treatment systems using nanofiltration membranes. Modern technologies for water treatment and protection of equipment from corrosion and scale formation. Book of reports of X Jubilee Scientific and Practical Conference, 2023, pp. 43–78]. (In Russian). - Wenjun Feng, Yue Liu, Li Gao. Stormwater treatment for reuse: Current practice and future development: A review. Journal of Environmental Management, 2022, v. 30, no. 1, article id. 113830.
- Scholes R. C., Stiegler A. N., Anderson C. M., Sedlak D. L. Enabling water reuse by treatment of reverse osmosis concentrate: the promise of constructed wetlands. ACS Publications, 2021, v. 1, is. 1.
- Sancilo P., Sharma A. K., Navaratna D., Muthukumaran S. Stormwater treatment using natural andengineered options in an urban growth area: A case study in the West of Melbourne. Water, 2023, v. 15 (23), p. 4047. DOI: 10.3390/wl15234047.
- Pervov A. G., Matveev N. A. Stormwater treatment for removal of synthetic surfactants and petroleum products by reverse osmosis including subsequent concentrate utilization. Petroleum Chemistry, 2014, v. 54, pp. 686–697.
- Abdul Wahab Mohammad, Nidal Hilal, Naif Darwish, Habis Al-Zoubi. Prediction of permeate fluxes and rejections of highly concentrated salts in nanofiltration membranes. Journal of Membrane Science, 289(1):40-50. DOI: 10/1016/j.memsci.2006.11.035.
- Al-Qadami E. H. H., Ahsan A., Mustafa Z., Abdurrasheed A. S., Yusof K. W., Shah S. M. H. Nanofiltration membrane technology and its applications in surface water treatment: A review. Journal of Desalination and Water Purification, 2020, 18:3-9. http:// ababilpub.com/download/jdwp18-2/.
- Hao Guo, Xianhui Li, Wulin Yang, et. al. Nanofiltration for drinking water treatment: A review. Frontiers of Chemical Science and Engineering, 2021, v. 16, pp. 681–698.
- Turek M., Mitko K., Dydo P., Laskovska E., Jakobic-Kolon A. Prospects for high water recovery membrane desalination. Desalination, 2017, v. 401, pp. 180–189. DOI: 10.1016/j.desal.2016.07.047.
- Goh P. S., Lau W. J., Othman M. H. D., Ismail A. F. Membrane fouling in desalination and its mitigation strategies. Desalination, 2018, v. 425, pp. 130–155. DOI: 10.1016/j.desal.2017.10.018.
- Shahid M. K., Choi Y.-G. The comparative study for scale inhibition on surface of RO membranes in wastewater reclamation: CO2 purging versus three different antiscalants. Journal of Membrane Science, 2018, v. 546, pp. 61–69. DOI: 10.1016/j.memsci.2017.09.087.
- Frenkel V. S., Pervov A. G., Andrianov A. P., Golovesov V. A. Investigation of antiscalant dosing influence on scaling process in reverse osmosis facilities and membrane surface adsorption. Proceedings of Moscow State University of Civil Engineering. 2019, v. 14, is. 6, pp. 610–621. DOI: 10.22227/1997-0935.2019.6.
- Zimmer K., Hater W., Icart A., Jaworski J., Kruse N., Braun G. The performance of polycarboxylates as inhibitors for CaCO3 scaling in reverse osmosis plants. Desalination and Water Treatment, 2016, v. 57, pp. 48–49. DOI: 10.1080/19443994.2015.1133874.
- Jamaly S., Darwish N. N., Ahmed I., Hasan S. W. A short review on reverse osmosis pretreatment technologies. Desalination, 2014, v. 354, pp. 30–38. DOI: 10.1016/j.desal.2014.09.017.
- Jiang S., Li Y., Ladewig B. P. A review of reverse osmosis membrane fouling and control strategies. Science of the Total Environmental, 2017, v. 595, pp. 567–583. DOI: 10.1016/j.scitotenv.2017.03.235.