№1|2020

DRINKING WATER SUPPLY

DOI 10.35776/MNP.2020.01.01

UDC 628.16:62-278

Pervov A. G., Golovesov V. A., Spitsov D. V., Rudakova G. Ya.

Ways of reducing the operating costs of membrane units
for the preparation of drinking water from underground water sources

Summary

Experimental investigations have been conducted to determine the main process parameters of membrane units (filtrate yield, the rate of scaling on membrane surface). Basing on the results of the experimental studies the total costs of purification of underground water of various chemical composition were obtained. The studies were conducted on laboratory benches with the use of nanofiltration membranes with various selectivity rates. The consumption of service chemicals and operational costs for the equipment were calculated by the software designed earlier by the authors for determining the process parameters of membrane units. While designing membrane units, nanofiltration membranes with low values of selectivity, power consumption and expenditures for chemicals are preferred. The dependencies of the calcium carbonate scaling rates on membrane types and the multiplicity of volumetric concentration of source water were obtained. A comparison of costs shows that the use of membranes even for cases of water deferrization is more economical than the known traditional technologies.

Key words

, , , , , , , , ,

Скачать/download (PDF) free access

 

REFERENCES

  1. Pena Garcia N., Rodriguez J., del Vigo F., Armstrong M., Fazel M., Chesters S. Results of a neutral pH cleaner that removes complex fouling and metals from membranes. The international Desalination Association World Congress. Sao Paolo, Brasil. REF: IDA 17 WC-37930_PENA.
  2. Salman M. A., Al-Nuwaibit G., Safar M., Al-Mesri A. Performance of physical treatment method and different commercial antiscalants to control scaling deposition in desalination plant. Desalination, 2015, v. 356, pp. 294–313.
  3. Chaussemier M., Pourmohtasham E., Gelus D., Pecoul N., Perrot H., Ledion J., Cheap- Charpentier H., Homer O. State of art of natural inhibitors of calcium carbonate scaling: A review article. Desalination, 2015, v. 356, pp. 47–55.
  4. Yangali-Quintanilla V. A., Dominiak D. M., van de Ven W. A smart optimization of antiscalant dosing in water. The International Desalination Association World Congress. Sao Paolo, Brazil, REF: IDA17WC-58252_Yangali-Quintanilla.
  5. Suratt W. B., Adrews D. R., Pujals V. J., Richards S. A. Design considerations for major membrane treatment facility for groundwater. Proceedings of the Conference on Membranes in Drinking and Industrial Water Production, v. 1, pp. 61–70, ISBN 0-86689-060-2, October 2000, Desalination Publications, L’Aquila, Italy.
  6. Veespareni S., Bond R. Getting this last drop: new technology for treatment of concentrate. Tianjin IDA World Congress 2013 on Desalination and Water Reuse, October 20–25, China. 2013, TIAN 13–357.
  7. Turek M., Mitko K., Dydo P., Laskovska E., Jakobic-Kolon A. Prospects for high water recovery membrane desalination. Desalination, 2017, v. 401, pp. 180–189.
  8. Goodin B. D., Pinto J. M., Butow R. R. Back to the future: innovation and energy efficiency on a low TDS BWRO retrofit/expansion. The International Desalination Association World Congress. Sao Paolo, Brazil, REF: IDA17WC-58359_Goodin.
  9. Pervov A. Precipitation of calcium carbonate in reverse osmosis retentate flow by means of seeded techniques – a tool to increase recovery. Desalination, 2015, v. 368, pp. 140–151.
  10. Jamaly S., Darwish N. N., Ahmed I., Hasan S. W. A short review on reverse osmosis pretreatment technologies. Desalination, 2014, v. 354. pp. 30–38.
  11. Goh P. S., Lau W. J., Othman M. H. D., Ismail A. F. Membrane fouling in desalination and its mitigation strategies. Desalination, 2018, v. 425, pp. 130–155.
  12. Jiang S., Li Y., Ladewig B. P. A review of reverse osmosis membrane fouling and control strategies. Science Total Environ, 2017, v. 595. pp. 567–583.
  13. Al-Roomi Y. M., Hussain K. F. Potential kinetic model of scaling and scale inhibition mechanism. Desalination, 2016, v. 393, pp. 186–195.
  14. Liu D., Dong W., Hiu F., Ledion J. Comparative performance of polyepoxysuccinic acid and polyaspartic acid on scaling inhibition by static and rapid controlled precipitation methods. Desalination, 2014, v. 304, pp. 1–10.
  15. Pramanik B. K., Gao Y., Fan L., Roddick F. A., Liu Z. Antiscaling effect of polyaspartic acid and its derivative for RO membranes used for saline wastewater and brackish water desalination. Desalination, 2017, v. 404, pp. 224–229.
  16. Chaussemier M., Pourmohtasham E., Gelus D., Pecoul N., Perrot H., Hubert L., Ledion J., Cheap-Charpentier H., Horner O. State of art of natural inhibitors of calcium carbonate scaling: A review article. Desalination, 2015, v. 356, pp. 47–55.
  17. Li X., Hasson D., Shemer H. Flow conditions affecting the induction period of CaSO4 scaling on RO membranes. Desalination, 2018, v. 431, pp. 119–125.
  18. Borden J., Gilron J., Hasson D. Analysis of RO flux decline due to membrane surface blockage. Desalination, 1987, v. 66, pp. 257–269.
  19. Okazaki M., Kimura S. Scale Formation on Reverse Osmosis Membranes. Journal of Chemical Engineering of Japan, 1984, v. 17 (2), pp. 145–151.
  20. Zimmer K., Hater W., Icart A., Jaworski J., Kruse N., Braun G. The performance of polycarboxylates as inhibitors for CaCO3 scaling in reverse osmosis plants. Desalination and Water Treatment, 2016, v. 57, pp. 48–49.
  21. Pervov A., Andrianov A., Rudakova G., Popov K. A comparative study of some novel «green» and traditional antiscalants efficiency for the reverse osmotic Black Sea water desalination. Desalination and Water Treatment, 2017, v. 73, pp. 11–21.
  22. Ali S. A., Kazi I. W., Rahman F. Synthesis and evaluation of phosphate-free antiscalants to control CaSO4·2H2O scale formation in reverse osmosis desalination plants. Desalination, 2015, v. 357, pp. 36–44.
  23. Pervov A. G. A simplified RO process design based on understanding of fouling mechanisms. Desalination, 1999, v. 126, pp. 227–247.
  24. Popov K., Oshchepkov M., Kamagurov S., Tkachenko S., Dikareva Yu., Rudakova G. Synthesis and properties of novel fluorescent-tagged polyacrylate-based scale inhibitors. Journal of Applied Polymer Science, 2017, v. 134, pp. 45017.
  25. Oshchepkov M., Kamagurov S., Tkachenko S., Ryabova А., Popov K. Insight into the Mechanisms of Scale Inhibition. A case study of task-specific fluorescent-tagged scale inhibitor location on gypsum crystals. ChemNanoMat, 2019, v. 5, is. 5, pp. 586–892.
  26. Рудакова Г. Я., Попов К. И., Ощепков М. С., Первов А. Г., Андрианов А. П. Новые отечественные полимерные ингибиторы солеотложений «АМЕТЕК РО-1» и «АМЕТЕК РО-2» для предотвращения отложения ми-неральных солей в установках обессоливания и опреснения морской воды // Водоочистка. Водоподготовка. Водоснабжение. 2018. № 2 (122). С. 60–65.
    Rudakova G. Ia., Popov K. I., Oshchepkov M. S., Pervov A. G., Andrianov A. P. [New domestic polymer scale inhibitors «AMETEK RO-1» and «AMETEK RO-2» for preventing the deposition of mineral salts in the units for sea water desalination]. Vodoochistka. Vodopodgotovka. Vodosnabzhenie, 2018, no. 2 (122), pp. 60–65. (In Russian).
  27. Schmidt C. K., Brauch H.-J. Analysis of aminopolycarboxylates and organophosphonates in biogeochemistry of chelating agents. Ed. B. Nowack, J. M. Van Briesen. ACS, N.Y., 2005, pp. 76–97.
  28. Shahid M. K., Choi Y.-G. The comparative study for scale inhibition on surface of RO membranes in wastewater reclamation: CO2 purging versus three different antiscalants. Journal of Membrane Science, 2018, v. 546, pp. 61–69.
  29. Li C., et al. Membrane fouling mitigation by coupling applied electric field in membrane system: Configuration, mechanism and performance. Electrochimica Acta, 2018, v. 287, pp. 124–134.
  30. Shahid M. K., Pyo M., Choi Y.-G. The operation of reverse osmosis system with CO2 as a scale inhibitor: A study on operational behavior and membrane morphology. Desalination, 2018, v. 426, pp. 11–20.

Журнал ВСТ включен в новый перечень ВАК

Шлафман В. В. Проектирование под заданную ценность, или достижимая эффективность технических решений – что это?

Banner Kofman 1