№3|2018

WASTEWATER TREATMENT

bbk 000000

UDC 628.312:54.01

Kofman V. Ya.

«Emerging contaminants» in water environment: international studies (review)

Summary

The scientific developments over a period of the late 1990-ies up to nowadays in the field of studies of the «emerging contaminants» presence in water environment are considered. Emerging contaminants include mainly pharmaceuticals, illegal drugs, ultraviolet filters, artificial sugar substitutes, biocides, their metabolites and transformation products as well as nanomaterials and micro(nano)-plastics. The progress in this field is now possible owing to the introduction of analytical methods based on liquid chromatography/mass-spectrometry into the laboratory practice. The method provides for identifying and determining polar contaminants in water environment, their metabolites and transformation products at the concentration level of ng/l. The applied mass-spectrometric detectors are characterized by the high sensitivity and selectivity. The improved techniques that provide for the higher efficiency of removing emerging contaminants from wastewater compared to the traditional processes are presented. Modern approaches to the evaluation of the toxicity of the contaminants under consideration in the situations when low concentrations of these substances in mixtures have a long-term impact on non-target organisms are discussed.

Key words

, , , ,

The further text is accessible on a paid subscription.
For authorisation enter the login/password.
Or subscribe

REFERENCES

  1. Noguera-Oviedo K., Aga D. S. Lessons learned from more than two decades of research on emerging contaminants in the environment. Journal of Hazardous Materials, 2016, v. 316, pp. 242–251.
  2. Kolpin D. W., Furlong E. T., Meyer M. T., et al. Pharmaceuticals hormones, and other organic wastewater contaminants in U. S. streams, 1999–2000: a national reconnaissance. Environmental Science and Technology, 2002, v. 36, pp. 1202–1211.
  3. Ankley G. T., Brooks B. W., Huggett D. B., Simpton J. P. Repeating history: Pharmaceuticals in the environment. Environmental Science and Technology, 2007, v. 41, pp. 8211–8217.
  4. Pal R., Megharaj M., Kirkbride K. P., Naidu R. Illicit drugs and the environment: A review. Science of the Total Environment, 2013, v. 463–464, pp. 1079–1092.
  5. Sang Z., Jiang Y., Tsoi Y.-K., Leung K. S.-Y. Evaluating the environmental impact of artificial sweeteners: A study of their distributions, photodegradation and toxicities. Water Research, 2014, v. 52, pp. 260–274.
  6. Diaz-Cruz M. S., Barcelo D. Chemical analysis and ecotoxicological effects of organic UV-absorbing compounds in aquatic ecosystems. Trends in Analytical Chemistry, 2009, v. 28, no. 6, pp. 708–717.
  7. Liu W.-R., Yang Y.-Y., Liu Y.-S., et al. Biocides in wastewater treatment plants: Mass balance analysis and pollution load estimation. Journal of Hazardous Materials, 2017, v. 329, pp. 310–320.
  8. Lege S., Guillet G., Merel S., et al. Denatonium – A so far unrecognized but ubiquitous water contaminant? Water Research, 2017, v. 117, pp. 254–260.
  9. Wiesner M. R., Lowry G. V., Alvarez P., et al. Assessing the risks of manufactured nanomaterials. Environmental Science and Technology, 2006, no. 40, pp. 4336–4345.
  10. Estahbanati S., Fahrenfeld N. L. Influence of wastewater treatment plant discharges on microplastic concentrations in surface water. Chemosphere, 2016, v. 162, pp. 277–284.
  11. Da Costa J. P., Santos P. S. M., Duarte A. C., Rocha-Santos T. (Nano)plastics in the environment – Sources, fates and effects. Science of the Total Environment, 2016, v. 566–567, pp. 15–26.
  12. Cabrera-Lafaurie W. A., Romn F. R., Hernndez-Maldonado A. J. Single and multi-component adsorption of salicylic acid clofibric acid, carbamazepineand caffeine from water onto transition metal modified and partiallycalcined inorganic–organic pillared clay fixed beds. Journal of Hazardous Materials, 2015, v. 282, pp. 174–182.
  13. Ong Y. T., Ahmad A. L., Zein S. H. S., Tan S. H. A review on carbon nanotubes in an environmental protection and green engineering perspective. Brazilian Journal of Chemical Engineering, 2010, v. 27, no. 2, pp. 227–242.
  14. Rodriguez-Mozaz S., Ricart M., Kck-Schulmeyer M., et al. Pharmaceuticals and pesticides in reclaimed water: efficiency assessment of a microfiltration–reverse osmosis (MF–RO) pilot plant. Journal of Hazardous Materials, 2015, v. 282, pp. 165–173.
  15. Secondes M. F. N., Naddeo V., Belgiorno V., et al. Removal of emerging contaminants by simultaneous application of membrane ultrafiltration, activated carbon adsorption, and ultrasound irradiation. Journal of Hazardous Materials, 2014, v. 264, pp. 342–349.
  16. Zhao H., Zhang D., Du P., et al. A combination of electro-enzymatic catalysis and electrocoagulation for the removal of endocrine disrupting chemicals from water. Journal of Hazardous Materials, 2015, v. 297, pp. 269–277.
  17. Keen O. S., Love N. G., Aga D. S., Linden K. G. Biodegradability of iopromide products after UV/H2O2 advanced oxidation. Chemosphere, 2016, v. 144, pp. 989–994.
  18. Matamoros V., Gutirrez R., Ferrer I., et al. Capability of microalgae-based wastewater treatment systems to remove emerging organic contaminants: a pilot-scale study. Journal of Hazardous Materials, 2015, v. 288, pp. 34–42.
  19. Lee E., Shon H. K., Cho J. Role of wetland organic matters as photosensitizer for degradation of micropollutants and metabolites. Journal of Hazardous Materials, 2014, v. 276, pp. 1–9.
  20. Semblante G. U., Hai F. I., Huang X., et al. Trace organic contaminants in biosolids: impact of conventional wastewater and sludge processing technologies and emerging alternatives. Journal of Hazardous Materials, 2015, v. 300, pp. 1–17.
  21. Ganesh R., Smeraldi J., Hosseini T., et al. Evaluation of nanocopper removal and toxicity in municipal wastewaters. Environmental Science and Technology, 2010, v. 44, pp. 7808–7813.
  22. Wang Y., Westerhoff P., Hristovski K. D. Fate and biological effects of silver, titanium dioxide, and C60 (fullerene) nanomaterials during simulated wastewater treatment processes. Journal of Hazardous Materials, 2012, v. 201–202, pp. 16–22.
  23. Ladner D. A., Steele M., Weir A., et al. Functionalized nanoparticle interactions with polymeric membranes. Journal of Hazardous Materials, 2012, v. 211–222, pp. 288–295.
  24. Herbort A. F., Schuhen K. A concept for removal of microplastics from the marine environment with innovative host-guest relationships. Environmental Science and Pollution Research, 2017, v. 24, no. 12, pp. 11061–11065.
  25. Kumar V., Johnson A. C., Nakada N., et al. De-conjugation behavior of conjugated estrogens in the raw sewage, activated sludge and river water. Journal of Hazardous Materials, 2012, v. 227–228, pp. 49–54.
  26. Prasse C., Wagner M., Schulz R., Ternes T. A. Oxidation of the antiviral drug acyclovir and its biodegradation product carboxy-acyclovir with ozone: kinetics and identification of oxidation products. Environmental Science and Technology, 2012, v. 46, pp. 2169–2178.
  27. Olmez-Hanci T., Arslan-Alaton I., Genc B. Bisphenol A treatment by the hot persulfate process: oxidation products and acute toxicity. Journal of Hazardous Materials, 2013, v. 263, pp. 283–290.
  28. Salgado R., Oehmen A., Carvalho G., et al. Biodegradation of clofibric acid and identification of its metabolites. Journal of Hazardous Materials, 2012, v. 241–242, pp. 182–189.
  29. Heuett N. V., Batchu S. R., Gardinali P. R. Understanding the magnitude of emergent contaminant releases through target screening and metabolite identification using high resolution mass spectrometry: illicit drugs in raw sewage influents. Journal of Hazardous Materials, 2015, v. 282, pp. 41–50.
  30. Postigo C., Richardson S. D. Transformation of pharmaceuticals during oxidation/disinfection processes in drinking water treatment. Journal of Hazardous Materials, 2014, v. 279, pp. 461–475.
  31. Scheurer M., Godejohann M., Wick A., et al. Structural elucidation of main ozonation products of the artificial sweete­ner cyclamate and acesulfame. Environmental Science and Pollution Research International, 2012, v. 19, № 4, pp. 1107–1118.
  32. Negreira N., Canosa P., Rodriguez I., et al. Study of some UV filters stability in chlorinated water and identification of halogenated by-products by gas-chromatography – mass-spectrometry. Journal of Chromatography A, 2008, v. 1178, no. 1–2, рр. 206–214.
  33. Nakajima M., Kawakami T., Niino T., et al. Aquatic life of sunscreen agent octyl-4-methoxycinnamate and octyl-4-dimethylaminobenzoate in model swimming pools and the mutagenic assays of their chlorination by-products. Journal of Health Sciences, 2009, v. 55, no. 3, рр. 363–372.
  34. Eggen R. I. L., Behra R., Burkhardt-Holm P., et al. Challenges in ecotoxicology. Environmental Science and Techno­logy, 2004, v. 38, pp. 58A–64A.
  35. Lu J., Wu J., Stoffella P. J., Wilson P. C. Uptake and distribution of bisphenol A and nonylphenol in vegetable crops irrigated with reclaimed water. Journal of Hazardous Materials, 2015, v. 283, pp. 865–870.
  36. Escher B. I., Bramaz N., Eggen R. I. L., Richter M. In vitro assessment of modes of toxic action of pharmaceuticals in aquatic life. Environmental Science and Technology, 2005, v. 39, pp. 3090–3100.
  37. Fuhrman V. F., Tal A., Arnon S. Why endocrine disrupting chemicals (EDCs) challenge traditional risk assessment and how to respond. Journal of Hazardous Materials, 2015, v. 286, pp. 589–611.
  38. Vasquez M. I., Lambrianides A., Schneider M., et al. Environmental side effects of pharmaceutical cocktails: what we know and what we should know. Journal of Hazardous Materials, 2014, v. 279, pp. 169–189.
  39. Gottschalk F., Sonderer T., Scholz R. W., Nowack B. Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO Ag, CNT, fullerenes) for different regions. Environmental Science and Technology, 2009, v. 43, pp. 9216–9222.
  40. Aschberger K., Micheletti C., Sokul-Kluttgen B., Christensen F. M. Analysis of currently available data for characterising the risk of engineered nanomaterials to the environment and human health. Lessons learned from four case studies. Environment International, 2011, v. 37, pp. 1143–1156.
  41. Simate G. S., Lyuke S. E., Ndlovu S., et al. Human health effects of residual carbon nanotubes and traditional water treatment chemicals in drinking water. Environment International, 2012, v. 39, pp. 38–49.
  42. Chen L., Hu P., Zhang L., et al. Toxicity of graphene oxide and multi-walled carbon nanotubes against human cells and zebrafish. Science of China: Chemistry, 2012, v. 55, pp. 2209–2216.
  43. Li Q., Mahendra S., Lyon D. Y., et al. Antimicrobial nanomaterials for water disinfection and microbial control: Potential application and implication. Water Research, 2008, v. 42, pp. 4591–4602.
  44. Jeong E., Im W.-T., Kim D.-H., et al. Different susceptibilities of bacterial community to silver nanoparticles in wastewater treatment systems. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Enginee­ring, 2014, v. 49, no. 6, pp. 685–693.
  45. Lambert S., Sinclair C., Boxall A. Occurence, degradation and effect of polymerbased materials in the environment. Review of Environmental Contamination Toxicology, 2014, v. 227, pp. 1–53.
  46. Krauss M., Singer H., Hollender J. LC–high resolution MS in environmental analysis: from target screening to the identification of unknowns. Analytical and Bioanalytical Chemistry, 2010, v. 397, pp. 943–951.
  47. Escher B. I., Fenner K. Recent advances in environmental risk assessment of transformation products. Environmental Science and Technology, 2011, v. 45, pp. 3835–3847.

Журнал ВСТ включен в новый перечень ВАК

Шлафман В. В. Проектирование под заданную ценность, или достижимая эффективность технических решений – что это?

Banner Kofman 1