№10|2013

ADVANCED TECHNOLOGIES AND EQUIPMENT

bbk 000000

UDC 628.16.094.3

Kofman V. Ya.

New advanced oxidation technologies of water and wastewater treatment (part 1)
(foreign publications review)

Summary

With the increase in population and industrial water consumption satisfying the demand for drinking water becomes a very pressing issue. This problem can be solved by using innovation process flow schemes of wastewater treatment. Advanced oxidation technologies are among them, i. e. homogenous and heterogenous photocatalytic processes, ozonation, Fenton’s process options, ultrasonic treatment, wet oxidation, electrochemical processes, oxidation in supercritical
water, plasma processes, ferrate and persulfate technologies, ionization radiation and microwave treatment. Hydroxyl radicals play key role in these processes. Photocatalytic processes proceed in the presence of catalysts with titanium dioxide (TiO2) being most efficient among them. The processes proceed in photocatalytic reactors in the presence of suspended catalyst and supported catalyst. In the process of water disinfection the synergistic effect is reached at combining advanced oxidation technologies and chlorination. Fenton’s process is based on the use of Fenton’s reagent, i. e. mixture of Fe2+ salt (catalyst) and hydrogen peroxide. Optimal рН value of 2.8–4 is the basic parameter of this process. Ozonation process proceeding in the presence of hydroxyl radicals originating from chemical transformation of ozone at 2.8 hydroxyl radical reduction potential is considered. Optimal formation of hydroxyl radicals is provided in ozonizers with hydrogen peroxide dosing device (Peroxone process). Ozonation in the process of UV-irradiation; ozonation in the process of UV-irradiation in the presence of hydrogen peroxide, ozonation in combination with ultrasound (Sonozone process) are considered. The use of advanced oxidation technologies in wastewater treatment produces positive results that provide for satisfying the water demand. (To be continued).

Key words

, , , , ,

The further text is accessible on a paid subscription.
For authorisation enter the login/password.
Or subscribe

REFERENCES

  1. Stasinakis A. S. Use of selected advanced oxidation processes (AOPs) for wastewater treatment: A mini review. Global NEST Journal, 2008, no. 10 (3), pp. 376–385.
  2. Comninellis C., Kapalka A., Malato S., Parsons S. A., Poulios I., Mantzvino D. Perspective advanced oxidation processes for water treatment: advances and trends for R&D. Journal of Chemical Technology and Biotechnology, 2008, no. 83, pp. 769–776.
  3. Chong M. N., Jin B., Chow C. W. K., Saint C. Recent developments in photocatalytic water treatment technology: A review. Water Research, 2010, no. 44, pp. 2997–3027.
  4. Di Paola A., Garcia-Lopez E., Palmisano L. A survey of photocatalytic materials for environmental remediation. Journal of Hazardous Materials, 2012, no. 211–212, pp. 3–29.
  5. Chan S. H. S., Wu T. Y., Juan J. C., Teh C. Y. Recent developments of metal oxide semiconductors as photocatalysts in advanced oxidation processes (AOPs) for treatment of dye wastewater. Journal of Chemical Technology and Biotechnology, 2011, no. 86, pp. 1130–1158.
  6. El-Bahy Z. M., Ismail A. A., Mohamed R. M. Enhancement of titania doping rare earth for photodegra­dation of organic dye (Direct Blue). Journal of Hazardous Materials, 2009, no. 166, pp. 138–143.
  7. Sahoo C., Gupta A. K. Optimization of photocatalytic degradation of methyl blue using silver ion doped titanium dioxide by combination of experemental design and response surface approach. Journal of Hazardous Materials, 2012, no. 215–216, pp. 302–310.
  8. Rauf M. A., Meetani M. A., Hisaindee S. An overview on the photocatalytic degradation of azo dyes in the presence of TiO2 doped with selective transition metals. Desalination, 2011, no. 276, pp. 13–27.
  9. Tian G., Chen Y., Pan K., Wang D., Zhou W., Ren Z., Fu H. Efficient visible light-induced degradation of phenol on N-doped anatase TiO2 with large surface area and high crystallinity. Applied Surface Science, 2010, no. 256, pp. 3740–3745.
  10. Wang X., Hu Z., Chen Y., Zhao G., Liu Y., Wen Z. A novel approach towards high-performance composite photocatalyst of TiO2 deposited on acvtivated carbon. Applied Surface Science, 2009, no. 255, pp. 3953–3958.
  11. Zhuang H., Lin C., Lai Y., Sun L., Li J. Some critical structure factors of titanium oxide nanotube array in its photocatalytic activity. Environmental Science and Technology, 2007, no. 41, pp. 4735–4740.
  12. Wang W., Serp P., Kalck P., Silva C. G., Faria J. L. Preparation and characterization of nanostructured MWCNT-TiO2 composite materials for photocatalytic water treatment application. Materials Research Bulletin, 2008, no. 43, pp. 958–967.
  13. Oh W.-C., Jung A.-R., Ko W.-B. Preparation of fullerene/TiO2 composite and its photocatalytic effect. Journal of Industrial and Engineering Chemistry, 2007, no. 13, pp. 1208–1214.
  14. Pare B., Jonnalagadda S. B., Tomar H., Singh P., Bhagwat V. W. ZnO assisted photocatalytic degradation of acridine orange in aqueous solution using visible irradiation. Desalination, 2008, no. 232, pp. 80–90.
  15. Zhou B., Liu Z., Wang H., Yang N., Su W. Experimental study on photocatalytic activity of Cu2O/Cu nanocomposites under visible light. Catalysis Letters, 2009, no. 132, pp. 75–80.
  16. Hayat K., Gondal M. A., Khaled M. M., Ahmed S. Effect of operational key parameters on photocatalytic degradation of phenol using nano nickel oxide synthesized by sol-gel method. Journal of Molecular Catalysis A-Chemical, 2011, no. 336, pp. 64–71.
  17. Wang Y., Liu C. S., Li F. B., Liu C. P., Liang J. B. Photodegradation of polycyclic aromatic hydrocarbon pyrene by iron oxide in solid phase. Journal of Hazardous Materials, 2009, no. 162, pp. 716–723.
  18. Sayama K., Hayashi H., Arai T., Yanagida M., Gunji T., Sugihara H. Highly active WO3 semiconductor photocatalyst prepared from amorphous peroxotungstic acid for the degradation of varios organic compounds. Applied Catalysis B-Environmental, 2010, no. 94, pp. 150–157.
  19. Shahid M., Rhen D. S., Shakir I., Patole S. P., Yoo J. B., Yang S. J., Kang D. J. Facile synthesis of single crystalline vanadium pentoxide nanowires and their phocatalytic behavior. Materials Letters, 2010, pp. 2458–2461.
  20. Kominami H., Oki K., Kohno M., Onoue S.-I., Kera Y., Ohtani B. Novel solvothermal synthesis of niobium (V) oxide powders and their photocatalytic avtivity in aqueous suspensions. Journal of Materials Chemistry, 2001, no. 11, pp. 604–609.
  21. Zhu Y., Yu F., Man Y., Tian Q., He Y., Wu H. Preparartion and performances of nanosized Ta2O5 powder photocatalyst. Journal of Solid State Chemistry, 2005, no. 178, pp. 224–229.
  22. Karunakaran C., Senthilvelan S. Photocatalysis with ZrO2: oxidation of aniline. Journal of Molecular Catalysis A-Chemical, 2005, no. 233, pp. 1–8.
  23. Ji P., Zhang J., Chen F., Anpo M. Study of adsorption and degradation of acid orange 7 on the surface of CeO2 under visible light irradiation. Applied Catalysis B-Environmental, 2009, no. 85, pp. 148–154.
  24. Zhao B., Zhang P. Photocatalytic decomposition of perfluorooctanoic acid with beta-Ga2O3 wide bandgap photocatalyst. Catalysis Communications, 2009, no. 10, pp. 1184–1187.
  25. Hu J. S., Ren L. L., Guo Y. G., Liang H. P., Cao A. M., Wan L. J., Bai C. L. Mass production and high photocatalytic activity of ZnS nanoporous nanoparticles. Angewandte Chemie International Edition, 2005, no. 44, pp. 1269–1273.
  26. Yin W., Wang W., Zhou L., Sun S., Zhang L. CTAB-assisted synthesis of monoclinic BiVO4 photocatalyst and its highly efficient degradation of organic dye under visible-light irradiation. Journal of Hazardous Materials, 2010, no. 173, pp. 194–199.
  27. Ren J., Wang W., Zhang J., Chang J., Hu S. Photocatalytic inactivation of bacteria by photocatalyst Bi2WO6 under visible light. Catalysis Communications, 2009, no. 10, pp. 1940–1943.
  28. Foletto E. L., Jahn S. L., Moreira R. F. Hydrothermal preparation of Zn2SnO4 nanocrystals and photoca­talytic degradation of leather dye. Journal of Applied Electrochemistry, 2010, no. 40, pp. 59–63.
  29. Luan J., Zhao W., Feng J., Cai H., Zheng Z., Pan B., Wu X., Zou Z., Li Y. Structure, photophysical and photocatalytic properties of novel Bi2AlVO7. Journal of Hazardous Materials, 2009, no. 164, pp. 781–789.
  30. Benotti M. J., Stanford B. D., Wert E. C., Snyder S. A. Evaluation of a photocatalytic reactor membrane pilot system of pharmaceuticals and endocrine disrupting compounds removing from water. Water Research, 2009, no. 43, pp. 1513–1522.
  31. Zhang W., Li Y., Su Y., Mao K., Wang Q. Effect of water composition on TiO2 photocatalytic removal of endocrine disrupting compounds (EDCs) and estrogenic activity from secondary effluent. Journal of Hazardous Materials, 2012, no. 215–216, pp. 252–258.
  32. Robertson P. K. J., Robertson J. M. C., Bahnemann D. W. Removal of microorganisms and their che­mical metabolites from water using semiconductor photocatalysis. Journal of Hazardous Materials, 2012, no. 211–212, pp. 161–171.
  33. Lin C.-H., Yu R.-F., Cheng W.-P., Liu C.-R. Monitoring and control of UV and UV-TiO2 disinfections for municipal wastewater reclamation using artificial neural networks. Journal of Hazardous Materials, 2012, no. 209–210, pp. 348–354.
  34. Bacardit J., Stotzner J., Chamarro E. Effect of salinity on the photo-Fenton process. Industrial & Engineering Chemistry Research, 2007, no. 46, pp. 7615–7619.
  35. Chen L., Ma J., Li X., Zhang J., Fang J., Guan Y., Xie P. Strong enhancement on Fenton oxidation by addition of hydroxylamine to accelerate the ferric and ferrous iron cycles. Environmental Science and Technology, 2011, no. 45 (9), pp. 3925–3930.
  36. Brillas E., Sires I., Oturan M. A. Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chemical Reviews, 2009, no. 79, pp. 6570–6631.
  37. Dirany A., Sires I., Oturan M. A. Electrochemical abatement of the antibiotic sulfamethoxazole from water. Chemosphere, 2010, no. 81, pp. 594–602.
  38. Neafsey K., Zeng X., Lemley A. T. Degradation of sulfonamide in aqueous solution by membrane anodic Fenton treatment. Journal of Agricultural and Food Chemistry, 2010, no. 58, pp. 1068–1076.
  39. Isarain-Chavez E., Cabot P. L., Centrellas F., Rodriguez R. M., Arias C., Garrido J. A. Electro-Fenton and photoelectro-Fenton degradations of the drug beta-blocker propranolol using a Pt anode: identification and evolution of oxidation products. Journal of Hazardous Materials, 2011, no. 185, pp. 1228–1235.
  40. Liu Y., Gan X., Zhou B., Xiong B., Li J., Dong C. Photoelectrocatalytic degradation of tetracycline by highly effective TiO2 nanopore arrays electrode. Journal of Hazardous Materials, 2009, no. 171, pp. 678–683.
  41. Li W., Nanaboina V., Zhou Q., Korshin G. V. Effects of Fenton treatment on the properties of effluent organic matter and their relationships with the degradation of pharmaceuticals and personal care products. Water Research, 2012. no. 46 (2), pp. 403–412.
  42. Bensalah N., Khodary A., Abdel-Wahab A. Kinetic and mechanistic investigation of mesotrione degradation in aqueous medium by Fenton process. Journal of Hazardous Materials, 2011, no. 189 (1–2), pp. 479–485.
  43. De la Cruz N., Gimenez J., Esplugas S., Grandjean D., de Alencasto L. F., Pulgarin C. Degradation of 32 emergent contaminants by UV and neutral photo-Fenton in domestic wastewater effluent previously treated by activated sludge. Water Research, 2012, no. 46, pp. 1947–1957.
  44. Sirtori C., Zapata A., Malato S., Aguera A. Formation of chlorinated by-products during photo-Fenton degradation of pyrimethanil under saline conditions. Influence on toxicity and biodegradability. Journal of Hazardous Materials, 2012, no. 217–218, pp. 217–223.
  45. Hermosilla D., Merayo N., Ordonez R., Blanco A. Optimization of conventional Fenton and ultraviolet-assisted oxidation processes for the treatment of reverse osmosis retentate from paper mill. Waste Management, 2012, no. 32 (6), pp. 1236–1243.
  46. Garcia-Segura S., Garrido J. A., Rodriguez R. M., Cabot P. L., Centellas F., Arias C., Brillas E. Mineralization of flumequine in acidic medium by electro-Fenton and photoelectro-Fenton processes. Water Reseach, 2012, no. 46 (7), pp. 2067–2076.
  47. De Luna M. D. G., Veciana M. L., Su C.-C., Lu M.-C. Acetamonophen degradation by electro-Fenton and photoelectro-Fenton using a double cathode electrochemical cell. Journal of Hazardous Materials, 2012, no. 217–218, pp. 200–207.
  48. Kim J. Y., Lee C., Sedlak D. L., Yoon J., Nelson K. L. Inactivation of MS2 coliphage by Fenton’s reagent. Water Research, 2010, no. 44 (8), pp. 2647–2653.
  49. Trapido M. Ozone-based advanced oxidation processes. Encyclopedia of Life Support Systems. Available at: www.eols.net/Eols-sampleAllChapter.aspx. (accessed 19.07.2013).
  50. Pisarenko A. N., Stanford B. D., Yan D., Gerrity D., Snyder S. A. Effects of ozone and ozone/peroxide on trace organic contaminants and NDMA in drinking water and water reuse applications. Water Research, 2012, no. 46, pp. 316–326.
  51. Katsoyiannis I. A., Canonica S., von Gunten U. Efficiency and energy requirements for the transformation of organic micropollutants by ozone, O3/H2O2 and UV/H2O2. Water Research, 2011, no. 45, pp. 3811–3822.
  52. Steensen M. Chemical oxidation for the treatment of leachate-process comparison and results from full-scale plants. Water Science and Technology, 1997, no. 35, pp. 249–256.
  53. Sanchez-Polo M., von Gunten U., Rivera-Utrilla. Efficiency of activated carbon to transform ozone OH radicals: Influence of operational parameters. Water Research, 2005, no. 39, pp. 3189–3198.
  54. Sangave P. C., Gogate P. R., Pandit A. B. Ultrasound and ozone assisted biological degradation of thermally pretreated and anaerobically pretreated distillery wastewater. Chemosphere, 2007, no. 68, pp. 42–50.

Журнал ВСТ включен в новый перечень ВАК

Шлафман В. В. Проектирование под заданную ценность, или достижимая эффективность технических решений – что это?

Banner Kofman 1