№7|2021

WASTEWATER SLUDGE TREATMENT

DOI 10.35776/VST.2021.07.05
UDC 628.336.7

Markelov Aleksei, Shiriaevskii Valerii, Pupyrev E. I., Sheremeta Ignat, Nikitin Vasilii

The technology of wastewater sludge vitrification in comparison with other processing methodsThe technology of wastewater sludge vitrification in comparison with other processing methods

Summary

The experts of Ekopromtekh R & D Centre, LLC have developed an innovative technology for vitrification of wastewater sludge that provides for reducing significantly the volume of wastes and obtaining a safe vitrified material to be used in construction. A comparison of the vitrification technology with other methods of sludge processing is given: depositing, sludge digestion in digesters, drying, pyrolysis, catalytic and classical incineration. In Russia, more than 90% of the generated sludge is landfilled. If this trend persists, an increase in the sludge hauling distance is inevitable. Using unprocessed sludge as fertilizer increases the risk of soil contamination. Financial models of projects that envisage using digesters and selling biogas or electricity do not pay off. In case of using the drying method to obtain fuel from sludge, almost the same amount of thermal energy is consumed as the final product contains. Therefore, the cost of dried sludge as a fuel will not be less than the cost of natural gas, and taking into account other operating costs, including delivery to the consumer, will exceed the cost of gas by 2–3 times. Pyrolysis to obtain marketable products is under development and involves a lot of research. The technology of catalytic incineration of sludge without preliminary drying does not solve the main problems of any incineration process and causes certain difficulties: the risk of emission of superecotoxicants remains; the ash must be disposed of, the autothermal regime is difficult to maintain, the catalyst wears out and requires replacement. The vitrification technology has a number of advantages, it is ready for scaling and industrial implementation.

Key words

, , , , , , , , , ,

The further text is accessible on a paid subscription.
For authorisation enter the login/password.
Or subscribe

REFERENCES

  1. Tekhnologicheskii reglament «Rekonstruktsiya BOSK g. Kazani. Stroitel’stvo sooruzheniy termomekhanicheskoi obrabotki osadka v zakrytykh pomeshcheniiakh» [Technological regulations «Reconstruction of BWWTF in Kazan. Construction of facilities for thermomechanical sludge treatment in enclosed spaces»]. Available at: https://www.kzn.ru/upload/uf/dd0/1037_TR-03.06.19-sshiv.pdf (accessed April 30, 2021). (In Russian).
  2. Shiriaevskii V. L., Markelov A. Iu. [Neutralization of wastewater sludge by vitrification with preliminary drying]. Nailuchshchie Dostupnye Tekhnologii Vodosnabzheniia i Vodootvedeniia, 2021, no. 2, pp. 43–47. (In Russian).
  3. Territorial’naia skhema obrashcheniia s otkhodami, v tom chisle s tverdymi kommunal’nymi otkhodami, Moskovskoi oblasti. Prilozhenie k Postanovleniiu Pravitel’stva Moskovskoi oblasti ot 22 dekabria 2017 g. № 984/47 [Territorial layout of waste management including municipal solid waste, Moscow region. Appendix to the Decree of the Government of the Moscow Region dated December 22, 2017, no. 984/47. Krasnoiarsk, 2018].
  4. Offitsial’nyi sait AO «Mosvodokanal» [Corporate web-site of Mosvodokanal]. Available at: http://www.mosvodokanal.ru/sewerage/newtechnologies/precipitationdisposal.php (accessed April 30, 2021). (In Russian).
  5. Revealed: salmonella, toxic chemicals and plastic found in sewage spread on farmland, 04.02.2020 Crispin Dowler, Zach Boren: https://unearthed.greenpeace.org/2020/02/04/sewage-sludge-landspreading-environment-agency-report/ (accessed April 30, 2021).
  6. V Moskve podpisali kontsessionnoe soglashenie na stroitel’stvo dvukh zavodov. TASS, 9 aprelya 2021 g. [A concession agreement was signed in Moscow for the construction of two plants. TASS, April 9, 2021]. Available at: https://tass.ru/ekonomika/11104065 (accessed April 30, 2021). (In Russian).
  7. Opredelenie i predvaritel’naia otsenka ekologicheski-ustoichivykh variantov obrashcheniia s osadkom stochnykh vod, potentsial’no primenimykh v stranakh Vostochnogo partnerstva. Rezul’tat 1 [Identification and preliminary assessment of environmentally sustainable wastewater sludge management options potentially applicable in the EaP countries. Result 1. VIES+, Organization for Economic Cooperation and Development, 2020, 81 p.].
  8. Mohan D., Pittman Jr. C. U., Philip H. Steele pyrolysis of wood/biomass for bio-oil: A critical review. Energy Fuels, 2006, no. 20, v. 3, pp. 848–889.
  9. Sipra A. T., Gao N., Sarwa H. Municipal solid waste (MSW) pyrolysis for bio-fuel production: A review of effects of MSW components and catalysts. Fuel Processing Technology, 2018, v. 175, pp. 131–147.
  10. Kim Y., Parker W. A technical and economic evaluation of the pyrolysis of sewage sludge for the production of bio-oil. Bioresource Technology, 2008, no. 99, pp. 1409–1416.
  11. TwE 2014. Gasification technologies review – Technology, resources and implementation scenarios. Final revised report. Prepared by talent with energy for the city of Sydney’s Advanced Waste Treatment Master Plan, August 2014.
  12. Klinghoffer N., Castaldi M. J. Waste to energy conversion technology: gasification and pyrolisis of municipal solid waste (MSW). Woodhead Publishing Limited, 2013, 31 p. DOI: 10.1533/9780857096364.2.146.
  13. U.S. Department of Energy. Office of Energy Efficiency and Renewable Energy. Waste-to-Energy from Municipal Solid Wastes. Report DOE/EE-1796, August 2019, 28 p.
  14. Tekhnologiia kataliticheskogo szhiganiia ilovykh osadkov stochnykh vod. Ofitsial’nyi sait Instituta kataliza im. G. K. Boreskova SO RAN [Technology of catalytic combustion of wastewater sludge. The official website of the Institute of Catalysis named after G.K.Boreskov SB RAS]. Available at: http://www.catalysis.ru/block/index.php?ID=3&SECTION_ID=1948 (accessed 30.04.2021). (In Russian).
  15. Simonov A. D., Iazykov N. A., Parmon V. N., Dubinin Iu. V., Iakovlev V. A., Fedorov I. A. [Pat. RU2536510C2. IPC C02F 11/06, F23C 10/01. Catalytic reactor for the wastewater sludge treatment and a method for its processing (options)]. Izobreteniia. Poleznye Modeli, 2014, no. 36. (In Russian).
  16. Parmon V. N., Simonov A. D., Sadykov V. A., Tikhov S. F. [Catalytic incineration: achievements and problems]. Fizika Goreniia i Vzryva, 2015, v. 51, no. 25, pp. 5–13. (In Russian).
  17. Simonov A. D., Chub O. V., Iazukov N. A. [Catalytic incineration of municipal wastewater sludge]. Khimiia v Interesakh Ustoichivogo Razvitiia, 2010, v. 18, no. 6, pp. 749–753. (In Russian).
  18. Jumoke Oladejo, Kaiqi Shi, Xiang Luo, Gang Yang, Tao Wu. A review of sludge-to-energy recovery methods. Energies, 2019, no. 12, v. 60. DOI:10.3390/en12010060.
  19. Vaiano V., Sannino D., Caracciolo D., Naviglio B., Calvanese G., Ciambelli P. Catalytic combustion of tannery sludge in a rotating reactor. Journal of Advanced Chemical Engineering, 2014, v. 4, is. 1. JACE-13-9630. DOI: 10.4172/2090-4568. 1000103.
  20. Sannino D., Vaiano V., Ciambelli P., Caracciolo D., Naviglio B., Calvanese G. Enhanced thermal treatment of tannery sewage sludge. Chemical Engineering Transactions, 2010, no. 21, pp. 871–876. DOI: 10.3303/CET1021146.
  21. Zhiqiang Wang, Chen Hong, Yi Xing, Yifei Li, Lihui Feng, Mengmeng Jia. Combustion behaviors and kinetics of sewage sludge blended with pulverized coal: With and without catalysts. Waste Management, April 2018, v. 74, pp. 288–296.
  22. Han X., Niu M., Jiang X., Liu J. Combustion characteristics of sewage sludge in a fluidized bed. Industrial & Engineering Chemistry Research, 2012, no. 51 (32), pp. 10565–10570.
  23. Presentation of Japanese technology of waste to energy JASE-world Waste to Energy Sub WG Masanori Tsukahara Hitachi Zosen Corporation 2012.11.14.
  24. Jun Tsumori, P.E.Jp. Challenges and outlook related to municipal sewage sludge management in Japan. ISO TC275 Sludge. Biosolids Management Workshop September 8, 2014: Burlington, Ontario, Canada.
  25. Emerging Technologies for Biosolids Management. EPA 832-R-06-005. September 2006. Produced under U.S. EPA.
  26. Fedorov L. A. Dioksiny kak ekologicheskaia opasnost’: retrospektiva i perspektivy [Dioxins as an environmental hazard: retrospective and prospects. Moscow, Nauka Publ., 1993, 266 p.].
  27. Ochistka stochnykh vod s ispol’zovaniem tsentralizovannykh sistem vodootvedeniia poselenii, go-rodskikh okrugov. Informatsionno-tekhnicheskii spravochnik po nailuchshim dostupnym tekhnologiiam ITS 10-2019 [Wastewater treatment with the use of public wastewater disposal systems of communities, ur-ban districts. Information and technical reference book of the best available technologies ITS 10-2019. Moscow, Biuro NDT, 2019, 446 p.].

Журнал ВСТ включен в новый перечень ВАК

Шлафман В. В. Проектирование под заданную ценность, или достижимая эффективность технических решений – что это?

Banner Kofman 1