№3|2018

WATER QUALITY CONTROL

bbk 000000

UDC 628.1.03

Ponomarev A. P., Podkolzin I. V.

Morphology and mineral composition of nanostructures
in drinking water

Summary

As a result of the studies the method of excreting nanostructures from drinking water samples on the basis of micro- and ultrafiltration with the use of microfilters (450 nm pore size) and semipermeable membrane (15 nm pore size) was developed. It was found that in the process of ultrafiltration the mineral composition of water before and after passing through the membrane did not change. At the complete water passing into ultrafiltrate the membrane traps organomineral nanostructures with a diameter of 10–200 nm containing macro- and microelements. The integrated method of micro- and ultrafiltration provides for the efficient removal of nanostructure or nanobacteria from drinking water while preserving its mineral composition; this allows recommending this method for obtaining purified water for humans and animals. The analysis of the nanostructure mineral composition showed that calcium and sodium were prevailing macroelements; their total respective percentage content was 60–70%. This data proves the prior information given by the authors that calcium has been the main building blocks of the nanobacteria coat identified in human and animal blood. Taking into account the morphological specific features of the nanostructures excreted from drinking water, their form and dimensions, it should be noted that they are identical to the transformed cells of nanobacteria of human and animal blood. Comparison of the results of the analyses of three independent methods – electron microscopy, mass-spectrometry and chromatography allows being reinforced in view that nanobacteria originate from water that brings them into living organisms. Herewith, research workers that deny the existence of nanobacteria as living organisms recognize the fact that the given nanostructures can produce a significant impact on the human health.

Ключевые слова

, , , , ,

The further text is accessible on a paid subscription.
For authorisation enter the login/password.
Or subscribe

REFERENCES

  1. Folk R. L. SEM imaging of bacteria and nanobacteria in carbonate sediments and rocks. Journal of Sedimentary Petrology, 1993, v. 63, pp. 990–999.
  2. Folk R. L. Interaction between bacteria, nanobacteria, and precipitation in hot springs of central Italy. Geog. Phys. Quatern, 1994, v. 48, pp. 233–246.
  3. Volkov V. T., Smirnov G. V., Medvedev M. A., Volkova N. N. Nanobakteriia (perspektivy issledovanii) [Nanobacteria (research perspectives). Tomsk, Tvedynia Publ., 2003, 447 p.].
  4. Volkov V. T., Rikhvanov L. P., Volkova N. N. [Nanobacteria in drinking water – the newest factor in the advanced eco­logy]. Vestnik Sibirskogo Otdeleniia RAN VSH, 2005, no. 1 (9), pp. 20–25. (In Russian).
  5. Volkova N. N. Issledovanie biomineralizatsionnogo geoekologicheskogo faktora v podzemnykh vodakh Tomskogo raiona [Study of the biomineralization geoecological factor in the underground water of the Tomsk Area. Ph. D. thesis in Geology and Mineralogy. Tomsk, 2006, 152 p.].
  6. Smirnov D. G. Geoekologicheskie osobennosti nanobakterii i razrabotka sposobov kontrolia ikh kolichestva v razlichnykh prirodnykh ob”ektakh [Geological and ecological specific features of nanobacteria and the development of methods of their quantitative control in different natural objects. Ph. D. thesis in Engineering Science. Tomsk, 2007, 132 p.].
  7. Smirnov D. G., Volkova N. N. [Nanobacteria as a bioindicator of the environmental problem or human disease]. Izvestiia Tomskogo Gosudarstvennogo Universiteta, 2006, v. 309, no. 8, pp. 179–182. (In Russian).
  8. Kajander E. O., Kurpnen J., Akerman K., et al. Nanobacteria from blood the smallest cubturable automously replica­ting agent on Earth; Science. Nature, 1997, v. 3111, pp. 420–428.
  9. Kajander E. O. Nanobacteria – propagating calcifying nanoparticles. Letters in Applied Microbiology, 2006, v. 42 (6), pp. 549–552.
  10. Garas’ko E. V., Shiliaev R. R., Ponomarev A. P., Gorshenin A. P. [Calcifying nanoparticles in drinking water]. Vestnik Ivanovskoi Meditsinskoi Akademii, 2011, v. 16, no. 2, pp. 14–19. (In Russian).
  11. Gorshenin A. P., Garas’ko E. V., Ponomarev A. P. [Impact of nanobacteria on the quality and safety of drinking water]. Vodosnabzhenie i Sanitarnaia Tekhnika, 2010, no. 12, pp. 20–24. (In Russian).
  12. Ponomarev A. P. Elektronnaia mikroskopiia nanobakterii i drugikh predstavitelei mikro- i nanomira [Electron microscopy of nanobacteria and other representatives of the micro-and nanocosm. Vladimir, IP Zhuravleva Publ., 2011, 180 p.].
  13. Ponomarev A. P., Amelin V. G., Podkolzin I. V. [Organomineral composition of nanobacteria excreted from drinking water, animal and human blood]. Nanotekhnologii i Okhrana Zdorov’ia, 2012, v. IV, no. 3 (12), pp. 52–59. (In Russian).
  14. Bgatov A. V. [Biogenic classification of chemical elements]. Filosofiia Nauki, 1999, no. 2 (6). http://www.water.ru/digest/biogen_classification.shtml (accessed 20.10.2017). (In Russian).
  15. Raoult D., Drancourt M., Azza S., et al. Nanobacteria are minerale fetuin complex. PloS Pathogens, 2008, v. 4 (2).
  16. Martel J., Young J. D.-E. Purported nanobacteria in human blood as calcium carbonate nanoparticles. PNAS, 2008, v. 105, no. 14, pp. 5549–5554.
  17. Cisar J. O., Xu D.-Q., Thompson J. An alternative explanation of nanobacteria-induced biomineralization. Proceedings of the National Academy of Sciences of the United States of America, 2000, v. 97, pp. 368–372.
  18. Martel J., Young D. [Nanobacter: ups and downs]. V Mire Nauki, 2010, no. 3, pp. 47–55. (In Russian).

Журнал ВСТ включен в новый перечень ВАК

Шлафман В. В. Проектирование под заданную ценность, или достижимая эффективность технических решений – что это?

Banner Kofman 1