bbk 000000
UDC 628.1.03
Ponomarev A. P., Podkolzin I. V.
Morphology and mineral composition of nanostructures
in drinking water
Summary
As a result of the studies the method of excreting nanostructures from drinking water samples on the basis of micro- and ultrafiltration with the use of microfilters (450 nm pore size) and semipermeable membrane (15 nm pore size) was developed. It was found that in the process of ultrafiltration the mineral composition of water before and after passing through the membrane did not change. At the complete water passing into ultrafiltrate the membrane traps organomineral nanostructures with a diameter of 10–200 nm containing macro- and microelements. The integrated method of micro- and ultrafiltration provides for the efficient removal of nanostructure or nanobacteria from drinking water while preserving its mineral composition; this allows recommending this method for obtaining purified water for humans and animals. The analysis of the nanostructure mineral composition showed that calcium and sodium were prevailing macroelements; their total respective percentage content was 60–70%. This data proves the prior information given by the authors that calcium has been the main building blocks of the nanobacteria coat identified in human and animal blood. Taking into account the morphological specific features of the nanostructures excreted from drinking water, their form and dimensions, it should be noted that they are identical to the transformed cells of nanobacteria of human and animal blood. Comparison of the results of the analyses of three independent methods – electron microscopy, mass-spectrometry and chromatography allows being reinforced in view that nanobacteria originate from water that brings them into living organisms. Herewith, research workers that deny the existence of nanobacteria as living organisms recognize the fact that the given nanostructures can produce a significant impact on the human health.
Ключевые слова
potable water , ultrafiltration , nanostructures , electron microscopy , mass-spectrometry , liquid chromatography