№11|2013
НОВЫЕ ТЕХНОЛОГИИ И ОБОРУДОВАНИЕ
bbk 000000
УДК 628.16.094.3
Новые окислительные технологии очистки воды и сточных вод (часть 2)1
(обзор зарубежных изданий)
Аннотация
Новые окислительные технологии применяются для очистки воды и сточных вод, содержащих вещества, токсичные для микроорганизмов и не поддающиеся биодеградации. Ультразвуковая обработка обеспечивает хорошие результаты, но требует дорогостоящего оборудования и высоких энергозатрат. Ее эффективность может быть повышена использованием катализаторов (диоксида титана) и химических добавок; применяется в качестве предварительного процесса перед биологической очисткой. Мокрое окисление рассматривается как перспективный метод переработки фосфорсодержащих осадков сточных вод. Процесс проводят с использованием кислорода при 160–220 °С и давлении 12–28 бар с добавлением серной кислоты (рН 1,5). Технология окисления в суперкритической воде основана на взаимодействии органических загрязняющих веществ с окислителями в гомогенной суперкритической среде. Процесс проводят при температуре 400–650 °С и давлении 220–350 бар. Проведены опыты по инактивации бактерий Escherichia coli в речной воде с использованием импульсного коронного разряда (степень инактивации 99,8%). Технология плазменной очистки воды пока прошла лишь лабораторные испытания. Перспективным методом очистки воды является использование ферратов (VI) щелочных металлов, позволяющих удалять взвешенные вещества, фосфаты, снижать ХПК и БПК. Электрохимические процессы характеризуются гибкостью применения, безопасностью, селективностью и более высокой рентабельностью, позволяют удалять из сточных вод аммоний и нитраты. В результате применения комбинированных схем могут быть значительно снижены эксплуатационные расходы при высокой эффективности очистки воды в сравнении с индивидуальным использованием новых окислительных технологий. Полагают, что по мере развития научно-исследовательских и конструкторских работ в данной области число промышленных установок, использующих комбинированные схемы очистки сточных вод, будет расти.
(1Часть 1 статьи см.: Водоснабжение и санитарная техника. 2013. № 10. С. 68–78.)Ключевые слова
новые окислительные технологии , мокрое окисление , суперкритическая вода , плазменная очистка , ферраты , электрохимический процесс
Дальнейший текст доступен по платной подписке.
Авторизуйтесь: введите свой логин/пароль.
Или оформите подписку
СПИСОК ЛИТЕРАТУРЫ / REFERENCES
- Кофман В. Я. Новые окислительные технологии (часть 1) // Водоснабжение и санитарная техника. 2013. № 10. С. 68–78. Kofman V. Ia. Novye okislitel’nye tekhnologii [New advanced oxidation technologies of water and wastewater treatment (part 1)]. Vodosnabzhenie i Sanitarnaia Tekhnika, 2013, no. 10, pp. 68–78. (In Russian).
- Pang Y. L., Abdulah A. Z., Bhatia S. Review on sonochemical methods in the presence of catalysts and chemical additives for treatment of organic pollutants in waste water. Desalination, 2011, no. 277, pp. 1–14.
- Kubo M., Matsuoka K., Takahashi A., ShibasakiKitakawa N., Yonemoto T. Kinetics of ultrasonic degradation of phenol in the presence of TiO2 particles. Ultrasonic Sonochemistry, 2005, no. 12 (4), pp. 263–269.
- Wang J., Ma T., Zhang Z., Zhang X., Jiang Y., Zhang G., Zhao G., Zhao H., Zhang P. Investigation on transition crystal of ordinary rutile TiO2 powder and its sonocatalytic activity. Ultrasonic Sonochemistry, 2007, no. 14 (2), pp. 246–252.
- Wang Y., Zhao D., Ma W., Chen C., Zhao J. Enhanced sonocatalytic degradation of azo dyes by Au/TiO2. Environmental Science and Technology, 2008, no. 42 (16), pp. 6173–6178.
- Wang J., Liu Y., Zhang Z., Deng Y., Zhang L., Liu B., Xu R., Zhang X. Sonocatalytic degradation of azo fuchsine in the presence of the Codoped and Crdoped mixed crystal TiO2 powders and comparison of their sonocatalytic activity. Journal of Hazardous Materials, 2009, no. 170 (1), pp. 398–404.
- Zheng W., Maurin M., Tarr M. A. Enchancement of sonochemical degradation of phenol using hydrogen atom scavengers. Ultrasonic Sonochemistry, 2005, no. 12 (4), pp. 313–317.
- Goel M., Hongqiang H., Mujumdar A. S., Ray M. B. Sonochemical decomposition of volatile and nonvolatile organic compounds – a comparative study. Water Research, 2004, no. 38 (19), pp. 4247–4261.
- Guo Z., Feng R. Ultrasonic irradiationinduced degradation of lowconcentration bisphenol A in aqueous solution. Journal of Hazardous Materials, 2009, no. 163 (2–3), pp. 855–860.
- Merouani S., Hamdaoui O., Saoudi F., Chiba M. Sonochemical degradation of Rhodamine B in aqueous phase: effects of additives. Chemical Engineering Journal, 2010, no. 158 (3), pp. 550–557.
- Golash N., Gogate P. R. Degradation of dichlorvos containing wastewater using sonochemical reactors. Ultrasonic Sonochemistry, 2012, no. 19 (5), pp. 1051–1060.
- Blocher C., Niewersch C., Melin T. Phosphorus recovery from sewage sludge with a hybrid process of low pressure wet oxidation and nanofiltration. Water Research, 2012, no. 46, pp. 2009–2019.
- LoppinetSereani A., Aymonier C., Canseli F. Supercritical water for environmental technology. Journal of Chemical Technology and Biotechnology, 2010, no. 85, pp. 583–591.
- Xu D., Wang S., Tang X., Gong Y., Guo Y., Wang Y., Zhang J. Design of the first pilot scale plant of China for supercritical water oxidation of sewage sludge. Chemical Engineering Research and Design, 2012, no. 90 (2), pp. 288–297.
- Takahashi F., Oshima Y., Fukushi K., Yamamoto K. Enhanced oxidation of alkali metal acetate in supercritical water. Chemistry Letters, 2012, no. 41, pp. 267–269.
- Qiu K.J, Wang Z.Z. Experimental study on coking wastewater treatment by supercritical water oxidation. Gong Yongshui yu Feishui (Industrial Water and Wastewater), 2012, no. 43 (2), pp. 22–24, 37.
- Zhu N., Zhang F. Progress on the dehalogenation mechanisms of persistent organic halogenated compounds in subcritical water. Huangjing Huaxue (Environmental Chemistry), 2012, no. 31 (4), pp. 415–421.
- Wen X. Q., Wang M., Liu X. H. Effect of electrode configuration on the wastewater treatment by underwater electrical streamer discharge. IEEE Transactions on Plasma Science, 2012, no. 40 (4), pp. 1089–1093.
- Foster J., Sommers B. S., Gucker S. N., Blankson I. M., Adamovsky G. Perspective on the interaction of plasmas with liquid water for water purification. IEEE Transactions on Plasma Science, 2012, no. 40 (5), pp. 1311–1323.
- Li S., Hu S., Zhang H. Formation of hydroxyl radicals and hydrogen peroxide by a novel nanosecond pulsed plasma power in water. IEEE Transactions on Plasma Science, 2012, no. 40 (1), pp. 63–67.
- Перфильев Ю. Д., Куликов Л. А., Дедушенко С. К. Новая ферратная технология очистки воды. http://www.kge.msu.ru/ozone/archives/1rus_conf_pr/Presentations/Perfiliev.pdf.
- Perfil’ev Iu. D., Kulikov L. A., Dedushenko S. K. Novaia ferratnaia tekhnologiia ochistki vody [Advanced ferrate water treatment technology]. http://www.kge.msu.ru/ozone/archives/1rus_conf_pr/Presentations/Perfiliev.pdf. (In Russian).
- Alsheyab M., Jiang J. Q., Stanford C. Online production of ferrate with an electrochemical method and its potential application for wastewater treatment: A review. Journal of Environmental Management, 2009, no. 90 (3), pp. 1350–1356.
- Anquandah A. K., Sharma V. K., Knight D. A., Batchu S. R., Gardinali P. R. Oxidation of trimethoprim by ferrate (VI): Kinetics, products and antibacterial activity. Environmental Science and Technology, 2011, no. 45 (24), pp. 10575–10581.
- Sharma V. K. Oxidation of inorganic compounds by ferrate (VI) and ferrate (V): Oneelectron and twoelectron transfer steps. Environmental Science and Technology, 2010, no. 44 (13), pp. 5148–5152.
- Yang B., Ying G.G., Zhao J.L., Liu S., Zhou L.J., Chen F. Removal of selected endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) during ferrate (VI) treatment of secondary wastewater effluents. Water Research, 2012, no. 46 (7), pp. 2194–2204.
- Liu C. S. Higgins C. P., Wang F., Shin W.H. Effect of temperature on oxidative transformation of perfluorooctanoic acid (PFOA) by persulfate activation in water. Separation and Purification Technolology, 2012, no. 91, pp. 46–51.
- Chen W.S., Su Y.C. Removal of dinitrotoluenes in wastewater by sonoactivated persulfate. Ultrasonic Sonochemistry, 2012, no. 19 (4), pp. 921–927.
- Muhammad S., Shukla P. R., Tade O., Wang S. Heterogeneous activation of peroxymonosulphate by supported ruthenium catalysis for phenol degradation in water. Journal of Hazardous Materials, 2012, no. 215–216, pp. 183–190.
- Liang C., Lin Y.T., Shih W.H. Treatment of trichloroethylene by adsorption and persulfate oxidation in batch studies. Industrial Engineering and Chemical Research, 2009, no. 48 (18), pp. 8373–8380.
- Sires I., Brillas E. Remediation of water pollution caused by pharmaceutical residues based on electrochemical separation and degradation technologies: A review. Environment International, 2012, no. 40, pp. 212–229.
- Fernandes A., Pacheco M. J., Ciriaco L., Lopes A. Anodic oxidation of a biological treated leachate on a borondoped diamond. Journal of Hazardous Materials, 2012, no. 199–200, pp. 82–87.
- Comninellis C., Kapalka A., Malato S., Parsons S. A., Poulios I., Mantzavinos D. Advanced oxidation processes for water treatment: advances and trends for R&D. Journal of Chemical Technology and Biotechnology, 2008, no. 83, pp. 769–776.
- Harif T., Khai M., Adin A. Electrocoagulation versus chemical coagulation: Coagulation/flocculation mechanisms and resulting floc characteristics. Water Research, 2012, no. 46 (10), pp. 3177–3188.
- Wang K., Liu S., Zhang Q., He Y. Pharmaceutical wastewater treatment by internal microelectrolysiscoagulation, biological treatment and activated carbon sorption. Environmental Technology, 2009, no. 30, pp. 1469–1474.
- Jeong J., Lee J. Electrochemical oxidation of industrial wastewater with the tube type electrolysis module system. Separation and Purification Technology, 2012, no. 84, pp. 35–40.
- Perez G., Saiz J., Ibanez R., Urtiaga A. M., Ortiz I. Assessment of the formation of inorganic oxidation byproducts during the electrocatalytic treatment of ammonium from landfill leachates. Water Research, 2012, no. 46 (8), pp. 2579–2590.
- Mook W. T., Chakrabarti M. H., Aroua M. K., Khan G. M. A., Ali B. S., Islam M. S., Abu Hassan M. A. Removal of total ammonia nitrogen (TAN), nitrate and total organic carbon (TOC) from aquaculture wastewater using electrochemical technology: A review. Desalination, 2012, no. 285, pp. 1–13.
- Pikaar I., Li E., Rozendal R. A., Yuan Z., Keller J., Rabaey K. Longterm field test of an electrochemical method for sulfide removal from sewage. Water Research, 2012, no. 46 (9), pp. 3085–3093.
- Oller I., Malato S., SanchezPerez J. A. Combination of advanced oxidation processes and biological treatments for wastewater decontamination: A review. Science of the Total Environment, 2011, no. 409, pp. 4141–4166.
- Kastaned F., Maleterova Y., Kastanek P. Combination of advanced oxidation and/or reductive dehalogenation and biodegradation for the decontamination of waters contaminated with chlorinated organic compounds. Separation Science and Technology, 2007, no. 42, pp. 1613–1625.
- Lapertot M., Ebrahimi S., Dazio S., Rubinelli A., Pulgarin C. PhotoFenton and bilogical integrated process for degradation of a mixture of pesticides. Journal of Photochemistry and Photobiology, 2007, no. 186, pp. 34–40.
- BallesterosMartin M. M., SanchezPerez J. A., GarciaSanchez J. L., Montes de Oca L., Casas Lopez J. L., Oller I. Degradation of alachlor and pyrimethanil by combined photoFenton and biological oxidation. Journal of Hazardous Materials, 2008, no. 155, pp. 342–349.
- Sirtori C., Zapata A., Oller I., Gernjak W., Aguera A., Malato S. Decontamination industrial pharmaceutical wastewater by combining solar photoFenton and biological treatment. Water Research, 2009, no. 43, pp. 661–668.
- Gunnarson L., AdolfssonErici B., Rutgersson C., Forlin L., Larsson D. G. J. Comparison of six different sewage treatment processesreduction of estrogenic substances and effects on gene expression in exposed male fish. Science of the Total Environment, 2009, no. 407, pp. 5235–5242.
- Carballa M., Manterola G., Larrea L., Ternes T., Omil F., Lema J. M. Influence of ozone pretreatment on sludge anaerobic digestion: removal of pharmaceutical and personal care products. Chemosphere, 2007, no. 67, pp. 1444–1452.
- PrietoRodriguez L., MirallesCuevas S., Oller I., Aguera A., Li Puma G., Malato S. Treatment of emerging contaminants in wastewater treatment plants (WWTP) effluents by solar photocatalysis using low TiO2 concentrations. Journal of Hazardous Materials, 2012, no. 211–212, pp. 131–137.
- De la Cruz N., Gimenez J., Espugas S., Grandjean D., de Alencastro L. F., Pulgarin C. Degradation of 32 emergent contaminants by UV and neutral photoFenton in domestic wastewater effluent previously treated by active sludge. Water Research, 2012, no. 46 (6), pp. 1947–1957.
- GarsiaMontano J., Torrades F., GarciaHortal J. A., Domenech X., Peral J. Degradation of Procion Red HE7B reactive dye by coupling a photoFenton system with a sequencing batch reactor. Journal of Hazardous Materials, 2006, no. 134, pp. 220–229.
- Harrelkas F., Paulo A., Alves M. M., El Khadir L., Zaharaa O., Pons M. N. Photocatalytic and combined anaerobicphotocatalytic treatment of textile dyes. Chemosphere, 2008, no. 72, pp. 1816–1822.
- Hai F. L., Yamamoto K., Fukushi K. Development of a submerged membrane fungi reactor for textile wastewater treatment. Desalination, 2006, no. 192, pp. 315–322.
- Soloman P. A., Basha C. A., Velan M., Balasubramanian N., Marimuthu P. Augmentation of biodegradability of pulp and paper industry wastewater by electrochemical pretreatment and optimization by RSM. Separation and Purification Technology, 2009, no. 69, pp. 109–117.
- Balcioglu I. A., Sarac C., Kivilcimdan C., Tarlan E. Application of ozonation and biotreatment for forest industry wastewater. Ozone Science & Engineering, 2006, no. 28, pp. 431–436.
- Dogruel S., Genceli E. A., Babuna F. G., Orhon D. An investigation on the optimal location of ozonation within biological treatment for a tannery wastewater. Journal of Chemical Technology and Biotechnology, 2006, no. 81, pp. 1877–1885.
- Vidal G., Nietro J., Mansilla H. D., Bornhardt C. Combined oxidative and biological treatment of separated streams of tannery wastewater. Water Science and Technology, 2004, no. 49, pp. 287–292.
- Bressan M., Liberatore L., D’Alessandro N., Tonucci L., Belli C., Ranalli G. Improved combined chemi cal and biological treatments of olive mill wastewater. Journal of Agricultural and Food Chemistry, 2004, no. 5, pp. 1228–1233.
- Khoufi S., Aloui F., Sayadi S. Pilot scale hybrid process for olive mill wastewater treatment and reuse. Chemical Engineering Processes, 2009, no. 48, pp. 643–650.
- Sangave P. C., Gogate P. R., Pandit A. B. Combination of ozonation with conventional aerobic oxidation for distillery wastewater treatment. Chemosphere, 2007, no. 68, pp. 32–41.
- Neczai E., Kacprzak M., Lach J., Okoniewaska E. Effect of sonication on combined treatment of landfill leachate and domestic sewage in SBR reactor. Desalination, 2007, no. 204, pp. 227–233.
- Fernandes A., Pacheco M. J., Ciriaco L., Lopes A. Anodic oxidation of a biologically treated leachate on a borondoped diamond anode. Journal of Hazardous Materials, 2012, no. 199–200, pp. 82–87.
- Oller I., Malato S., SanchezPerez J. A., Maldonado M. I., Gernjak W., PerezEstrada L. A. Preindustrialscale combined solar photoFenton and immobilized biomass activatedsludge biotreatment. Industrial and Engineering Chemistry Research, 2007, no. 46, pp. 7467–7475.
- Zapata A., Malato S., SanchezPerez J. A., Oller I., Maldonado M. I. Scaleup strategy for a combined solar photoFenton/biological system for remediation of pesticidecontaminated water. Catalysis Today, 2010, no. 151, pp. 100–106.
- Di Laconi C., Ramadori R., Lopez A. The effect of ozone on tannery wastewater biological treatment at demonstrative scale. Bioresource Technology, 2009, no. 100, pp. 6121–6124.