Tag:sorption kinetics

№1|2018

WASTEWATER TREATMENT

bbk 000000

UDC 628.316.12

Stepanov S. V., Panfilova O. N., Abdugaffarova K. K.

Removing heavy metal ions from wastewater in the process
of tertiary treatment with a new sorbent based on modified clays

Summary

The concentrations of heavy metal ions present in municipal and industrial wastewater after biological treatment often exceed the maximum permissible values set for fishery water bodies. Sorption on activated carbon is a popular method in wastewater tertiary treatment practice. However, activated carbon is rather expensive and ineffective in removing heavy metal ions. Lately zeolites that provide for meeting MPCfishery waterbodies in tertiary treatment have been used; however, their sorption capacity is low. In ordert to reduce the cost of tertiary treatment brand new sorption materials that are free from shortcomings of activated carbon and zeolites, widely used and affordable are required. The results of studying the removal of heavy metal ions from the model multicomponent solution with the use of new sorbents based on modified clays and peat from the Samara Region are presented. The activation was executed by thermal method. For the enhanced removal of copper, iron, manganese, zinc and lead ions from effluents the sorbent prepared from two clay types and peat in equal ratio with polyvinil acetate emulsion as a bonding agent turned to be most efficient. The required contact time of sorbent and solution was 90 minutes. For aluminium removal a sorbent prepared from two clay types, peat,wood ash and polyvinil acetate can be used with 150 minutes contact time with the solution. Sorbents prepared on the basis oft he Samara Region clays provide for meeting MPCfishery waterbodies in the process of removing copper, iron, manganese, zinc, lead and aluminium from municipal and industrial effluents after biological treatment.

Key words

, , , ,

 

Журнал ВСТ включен в новый перечень ВАК

Шлафман В. В. Проектирование под заданную ценность, или достижимая эффективность технических решений – что это?

Banner Kofman 1