Tag:humus acids

№7|2017

DRINKING WATER SUPPLY

bbk 000000

UDC 628.162

Gandurina L. V., Gavrilova N. N., Kuzin E. N., Raff P. A.

The use of the dynamic light scattering method for characterizing humic acids in natural water

Summary

The results of studying the impact of sodium, calcium and aluminium salts on the dispersive characteristics of humic acids in natural water with the use of Photocor Compact-Z analyzer are presented. The dispersiveness of humic acids by molecular mass determines to wide extent the efficiency of natural water decoloration with aluminium salts. It is shown that the method of dynamic light scattering can be an efficient and rapid method of studying the conformational changes of macromolecules in alkaline and acid solutions, and chemical interactions between humic acids and metal ions. The studies were carried out with natural and simulated water prepared by extracting humic acids from peat with distilled water and blending the obtained solutions to the required color. The ion composition of simulated water was changed by adding calcium chloride, aluminium sulfate, «Aqua-Aurat™30» polyaluminum oxychloride, sodium hydrogen carbonate and hydrochloric acid.

Key words

, , , , , ,

 

№3|2016

DRINKING WATER SUPPLY

bbk 000000

UDC 628.168.4

Gandurina L. V., Getmantsev S. V., Raff P. A., Nikiforova A. Ju.

Chemical aspects of decoloration of low turbidity natural water with aluminium salts

Summary

The mechanism of decoloration of natural water with aluminium sulfate aluminium polyoxychloride is considered. The complexing reactions of humus acids with aluminium salts mainly contribute to the decoloration of natural water. The parallel proceeding reaction of aluminium sulfate and polyoxychloride hydrolysis facilitates the reduction of aluminium ion concentration in treated water but does not reduce color. Empirical dependences of coagulant dosages on color and alkalinity of raw water have been determined. Higher efficiency and lower dosages of aluminium polyoxychloride compared to aluminium sulfate used for decoloration are stipulated by the polymer origin of aluminium polyoxychloride. The use of coagulants in combination with cationic Praestol 650 flocculant provides for improving the efficiency of decoloration by 10–20% at the optimal coagulant: flocculant ratio of 50:1 for aluminium polyoxychloride and 20:1 for aluminium sulfate.

Key words

, , , , , , , ,

 

Журнал ВСТ включен в новый перечень ВАК

Шлафман В. В. Проектирование под заданную ценность, или достижимая эффективность технических решений – что это?

Banner Kofman 1