№7|2018

PIPELINE SYSTEMS

bbk 000000

UDC 628.2+532.54

Dezhina I. S., Orlov V. А.

Association between inner pipeline surface with the phenomenon of microturbulence at low liquid flows

Summary

The results of field-scale studies of developing the effect of microturbulence at low flows of liquid in a pipeline are presented. The possibility of increasing the pipeline transporting capacity with account of the current development of trenchless technologies and modified configuration of the inner surface of polymer pipes has been analyzed. The applicability of these studies for increasing the flow transporting capacity is denoted; the analogies to the demonstration of the natural phenomena of liquid flow transportation are set. The pipeline chute profile with artificial obstacles that create conditions for suspended solids breaking off and transfer is marked as the
most perspective one. The design of a special patented test-bench for studying by optical means the turbulence and liquid flow transporting capacity is described. The technique of working with the test-bench is presented; the types of working surfaces with options of artificial obstacle arrangements are described. Comprehensive pilot studies of microturbulence analysis, suspended solids removal and flow transporting capacity in open chutes with different texture of their inner surfaces were carried out with the use of optical means. The occurrence of microturbulence effect in the process of studies at different liquid flows was registered alongside with the increase of the efficiency of suspended solids transportation by liquid flow. The recommendations on the form and location of obstacles on the inner pipe chute surface are given.

Key words

, , , , ,

The further text is accessible on a paid subscription.
For authorisation enter the login/password.
Or subscribe

REFERENCES

  1. Khramenkov S. V. Strategiya modernizatsii vodoprovodnoy seti [Water distribution pipeline renovation strategy. Moscow, Stroiizdat Publ., 2005, 398 p.].
  2. Zakharov Iu. S., Orlov V. A. Vosstanovlenie vodootvodyashchikh setey polimernymi rukavami [Sewer rehabilitation with polymer liners. Moscow, Rusains LLC Publ., 2017, 107 p.].
  3. Orlov V. A., Khantaev I. S., Orlov E. V. Bestransheynye tekhnologii [Trenchless technologies. Moscow, ASV Publ., 2016, 216 p.].
  4. Orlov V., Zotkin S., Dezhina I., Zotkina I. Calculation of the hydraulic characteristics of the protective coating used in trenchless technologies for the construction and renovation of pipelines to extend their service life: MATEC Web of Confe­rences, 2017, v. 117.
  5. Idelchik I. E. Flow resistance: A design guide for engineers. Routledge, 2017, 416 p.
  6. Somov M. A., Zhurba M. G. Vodosnabzhenie T. 1. Sistemy zabora podachi i raspredeleniya vody [Water supply, v. 1. Systems of water abstraction, supply and distribution. Moscow, ASV Publ., 2008, 262 p.].
  7. A’tshul’ A. D., Kalitsun A. D., Kalitsun V. I., Mairanovskii F. G. Primery raschetov po gidravlike [Examples of hydraulic calculations. Moscow, Al’ians Publ., 2013, 255 p.].
  8. Kalitsun V. I. Vodootvodyashchie sistemy i sooruzheniya [Wastewater disposal systems and structures. Moscow, Stroiizdat Publ., 2008, 345 p.].
  9. Girgidov A. D. [Energy dissipation changes during transfer from laminar condition to turbulent one]. Inzhenerno-stroitel’nyi Zhurnal, 2011, no. 5 (23), pp. 49–52. (In Russian).
  10. Houghtalen R., Osman A., Akan A., Hwang N. Fundamentals of hydraulic engineering systems. Pearson, 2016, 528 p.
  11. Nachtigall W., Bluchel K. Das grose der Bionik. Mnchen, DVA Stuttgart, 2006, 399 p.
  12. Orlov V. A. [Bionics and trenchless renovation of pipeline networks]. Nauchnoe Obozrenie, 2013, no. 3, pp. 147–151. (In Russian).
  13. Boinovich L. B., Emel’ianenko A. M. [Hydrophobic materials and coatings: principles of development, properties and application]. Uspekhi Khimii, 2008, no. 77 (7), pp. 621–638. (In Russian).
  14. Scholtmeijer K., Janssen M. I., Gerssen B., de Vocht M. L., van Leeuwen B. M., van Kooten T. G., Wosten H. A. B., Wessels J. G. H. Surface modifications created by using engineered hydrophobins appl. Environmental Microbiology, 2002, no. 68 (3), p. 1367.
  15. Orlov V. A., Dezhina I. S., Pelipenko A. A., Orlov E. V. [Pat. 176330, RF. IPC G01B 9/00. Test-bench for studying turbulence and transporting capacity of liquid flow with optical means in open chutes at different texture of their inner surface]. Izobreteniia. Poleznye Modeli, 2018, no. 2. (In Russian).

Журнал ВСТ включен в новый перечень ВАК

Шлафман В. В. Проектирование под заданную ценность, или достижимая эффективность технических решений – что это?

Banner Kofman 1