№7|2017

WATER DISINFECTION

bbk 000000

UDC 628.166

Kofman V. Ya.

Toxic byproducts of water disinfection in swimming pools:
ways of formation and health risks
(review)

Summary

Up to date around 100 byproducts of water disinfection in swimming pools have been identified. Their basic precursors are biological fluids of the human organism and various organic pollutants also introduced by the visitors. Numerous studies have revealed the potential toxicity of water disinfection byproducts. At present in some countries the concentrations of trihalomethanes and halogen acetic acids in water in swimming pools are subject to regulation. Meeting the currently adopted water quality standards can be ensured by traditional disinfection methods (chlorination, ozonation, ultraviolet irradiation, the use of mixed oxidants) only providing the attendance policy and swimming pool maintenance rules have been observed, during their intensive use, in particular. Lately much attention has been paid to highly toxic nitrogen-containing and brominated byproducts of water disinfection that are present in high concentrations in swimming pools with sea water. For water disinfection in swimming pools different methods are used; herewith for each of them alongside with advantages the probability of byproduct formation exists. The list of detected disinfection byproducts is continuously expanded owing to the improvement of the analytical instruments as well as to the increase of the variety of pollutants introduced by the visitors, sun-protections creams in particular.

Key words

, , ,

The further text is accessible on a paid subscription.
For authorisation enter the login/password.
Or subscribe

REFERENCES

  1. Hrudey S. E. Chlorination disinfection by-products, public health risk tradeoffs and me. Water Research, 2009, v. 43, pp. 2057–2093.
  2. Harris R., Page T. The implication of cancer-causing substances in the Mississippi river waters. Environmental Defense Fund, Washington, D. C., 1974.
  3. Rook J. J. Formation of haloforms during chlorination of natural waters. Water Treatment and Examination, 1974, v. 23, pp. 234–243.
  4. Chowdhury S., Alhooshani K., Karanfil T. Disinfection byproducts in swimming pool: Occurences, implications and future needs. Water Research, 2014, v. 53, pp. 68–109.
  5. Chang H. H., Tung H. H., Chao C. C., Wang G. S. Occurence of haloacetic acids (HAAs) and trihalomethanes (THMs) in drinking water of Taiwan. Environmental Monitoring and Assessment, 2010, no. 162, pp. 237–250.
  6. Simard S., Tardif R., Rodriguez M. J. Variability of chlorination by-product occurrence in water of indoor and outdoor swimming pools. Water Research, 2013, v. 47, pp. 1763–1772.
  7. Kanan A., Karanfil T. Formation of disinfection by-products in indoor swimming pool water: The contribution from filling water natural organic matter and swimmer body fluids. Water Research, 2011, v. 45, pp. 926–932.
  8. Hansen K. M. S., Willach S., et al. Particles in swimming pool filters – Does pH determine the DBP formation? Chemosphere, 2012, v. 87, no. 3, pp. 241–247.
  9. Bond T., Templeton M. R., Graham N. Precursors of nitrogen disinfection by-products in drinking water: A critical review. Journal of Hazardous Materials, 2012, no. 235–236, pp. 1–16.
  10. Chowdhury S., Mazumder A. J., Husain T. Predicting bromide incorporation in a chloride indoor swimming pool. Environmental Science and Pollution Research, 2016, v. 23, pp. 12174–12184.
  11. Weng S., Blatchley III E. R. Disinfection by-products in a chlorinated indoor swimming pool under conditions of heavy use: National swimming competition. Water Research, 2011, v. 45, pp. 5241–5248.
  12. Keuten M. G. A., Schets F. M., Schijven J. F., Verberk J. Q. J. C., van Dijk J. C. Definition and quantification of initial anthropogenic pollutant release in swimming pools. Water Research, 2012, v. 46, pp. 3682–3692.
  13. Keuten M. G. A., Peters M. C. F. M., Daanen H. A. M., et al. Quantification of continual anthropogenic pollutants released in swimming pools. Water Research, 2014, v. 53, pp. 259–270.
  14. Lee J., Ha K.-T., Zoh K.-D. Characteristic of trihalomethanes (THM) production and associated health risk assessment in swimming pool waters treated with different disinfection methods. Science of the Total Environment, 2009, v. 40, no. 6, pp. 1990–1997.
  15. [The use of mixed oxidants for water disinfection in swimming pools and aquaparks]. Voda i Vodoochistnye Tekhnologii, 2013, no. 1, pp. 70–71. (In Russian).
  16. Soltermann F., Widler T., Canonica S., von Gunten U. Photolysis of inorganic chloramines and efficiency of trichloramine abatement by UV treatment of swimming pool water. Water Research, 2014, v. 56, pp. 280–291.
  17. Weng S., Li J., Blatchley III E. R. Effects of UV254 irradiation on residual chlorine and DBPs in chlorination of model organic-N precursors in swimming pools. Water Research, 2012, v. 46, pp. 2674–2682.
  18. Bond T., Huang J., Templeton M. R., Graham N. Occurrence and control of nitrogenous disinfection by-products in drinking water: A review. Water Research, 2011, v. 45, pp. 4341–4354.
  19. Goma A., Guisasola A., Taya C., et al. Benefits of carbon dioxide as pH reducer in chlorinated indoor swimming pools. Chemosphere, 2010, v. 80, pp. 428–432.
  20. Manasfi T., Meo M. D., Coulomb B., et al. Identification of disinfection by-products in freshwater and seawater swimming pools and evaluation of genotoxicity. Environment International, 2016, v. 88, pp. 94–102.
  21. Parinet J., Tabaries S., Coulomb B. Exposure levels to brominated compounds in seawater swimming pools treated with chlorine. Water Research, 2012, v. 46, pp. 828–836.
  22. Gondikas A. P., von der Kammer F., Reed R. B., et al. Release of TiO2 nanoparticles from sunscreens into surface waters: A one-year survey at the old danube recreation lake. Environmental Science and Technology, 2014, v. 48, no. 10, pp. 5415–5422.
  23. Holbrook R. D., Motabar D., Quinones O., et al. Titanium distribution in swimming pool water is dominated by dissolved species. Environmental Pollution, 2013, v. 181, pp. 68–74.
  24. Santos A. J. M., Miranda M. S., da Silva J. C. G. E. The degradation products of UV filters in aqueous and chlorinated aqueous solutions. Water Research, 2012, v. 46, pp. 3167–3176.
  25. Wang W., Qian Y., Boyd J. M., et al. Halobenzoquinones in swimming pool waters and their formation from personal care products. Environmental Science and Technology, 2013, v. 47, no. 7, pp. 3275–3282.
  26. Xiao F., Zhang X., Zhai H., et al. New halogenated disinfection byproducts in swimming pool water and their permeability across skin. Environmental Science and Technology, 2012, v. 46, no. 13, pp. 7112–7119.
  27. Sharma V. K., Zboril R., McDonald T. J. Formation and toxicity of brominated disinfection byproducts during chlorination and chloramination of water: A review. Journal of Environmental Science and Health – Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2014, v. 49, no. 3, pp. 212–228.
  28. Jiang J. O. Wang S., Papangoulopoulos A. The role of potassium ferrate (VI) in the inactivation of Escherichia coli and in the reduction of COD for water remediation. Desalination, 2007, no. 210, pp. 266–273.
  29. Sharma V. K., Kazama F., Jiangyong H., et al. Ferrates as environmentally-friendly oxidants and disinfectants. Journal of Water Health, 2005, no. 3, pp. 45–48.
  30. Li Q., Mahendra S., Lyon D. Y., et al. Antimicrobal nanomaterials for water disinfection and microbial control: Potential applications and implications. Water Research, 2008, v. 45, pp. 4591–4602.
  31. Rabea E. I., Badawy M. E., Stevens C. V., et al. Chitosan as antimicrobial agent: Applications and mode of action. Biomacromolecules, 2003, v. 4, no. 6, pp. 1457–1465.
  32. Gusseme B. D., Hennebel T., Christiaens E., et al. Virus disinfection in water by biogenic silver immobilized in polyvinylidene fluoride membranes. Water Research, 2011, v. 45, pp. 1856–1864.
  33. Lyon D. Y., Brown D. A., Alvarez P. J. Implication and potential applications of bactericidal fullerene water suspensions: Effect of (nC60) concentration, exposure conditions and shelf life. Water Science and Technology, 2008, v. 57, no. 10, pp. 1533–1538.
  34. Brady-Estevez A. S., Kang S., Elimelech M. A single-walled carbon nanotube filter for removal of viral and bacterial pathogenes. Small, 2007, v. 4, no. 4, pp. 481–484.

Журнал ВСТ включен в новый перечень ВАК

Шлафман В. В. Проектирование под заданную ценность, или достижимая эффективность технических решений – что это?

Banner Kofman 1