№10|2013

WASTEWATER SLUDGE TREATMENT

bbk 000000

UDC 628.336.098.4

Vanyushina A. Ya., Danilovich Dmitrii

Anaerobic digestion – the key technology of municipal wastewater sludge treatment (part 1)

Summary

The technologic options of municipal wastewater sludge treatment are considered with different approach to stabilization of organic matter. The technologic and environmental consequences of raw wastewater sludge landfilling are considered: emission of malodors, dewatered sludge re-thinning that entails re-dewatering are described. It is shown that traditional aerobic stabilization that was widely used last century does not meet the present day requirements both to power consumption and decomposition depth. The processes of autothermal thermophilic aerobic digestion and composting that provide for the production of safe and high-quality fertilizer from sludge are considered. It is concluded that the use of these processes is economically limited to the option of land utilization of the entire sludge volume. The issues of domestic approach to digestion that consist in using thermophilic mode with extremely low retention time of sludge in a digester are considered. The largest share of small particles in sludge digested by such technology caused numerous problems with dewatering in 1960–80-ies. The ways of solving these problems at the Kur’ianovo and Liubertsy wastewater treatment facilities in Moscow including the use of advanced dewatering equipment are described. It is concluded that in the XXI century anaerobic digestion of wastewater sludge in digesters does not have any other comparable alternative for large and mid-sized wastewater treatment facilities. The main trends in using digestion process, digester design, the methods of enhancing the process (thermal hydrolysis, disintegration, ultrasonic, phasing, recycling of digested sludge) are considered. The information on biogas properties is consolidated. (To be continued).

Key words

, , , ,

The further text is accessible on a paid subscription.
For authorisation enter the login/password.
Or subscribe

REFERENCES

  1. Instruktsiia po proektirovaniiu, ekspluatatsii i rekul’tivatsii poligonov dlia tverdykh bytovykh otkhodov [Manual on design, operation and reclamation of solid waste landfills]. Moscow, RF Ministry of Construction, Academy of public utilities named after K. D. Pamfilov, 1998, 39 p. (In Russian).
  2. Scisson J. P., Finkbeiner Jr. ATAD, the next generation: design, construction, start-up and operation of the first municipal 2nd generation ATAD: Proc. of WEF/AWWA/CWEA Joint Residuals and Biosolids Management Conference and Exhibition 2003.
  3. Giunter L. I., Gol’dfarb L. L. Metantenki [Digesters]. Moscow, Stroiizdat Publ., 1992, 128 p. (In Russian).
  4. Johnson T. S., Scanlan P. A., Yurtseven D., Kuchenrither R. D. State of practice: Biosolids energy and resource recovery: Water Convention, SIWW 09, Singapore, 23–26 June 2009.
  5. Pakhomov A. N., Danilovitch D. A., Streltsov S. A., Daineko F. A., Belov N. A., Sorensen J., Dalgaard O. Improvement of sludge digester operation at Kuryanovo and Lyuberetskaya wastewater treatment plants: IWA Sludge Management Conference «Sustainable sludge management: state of the art, challenges and perspectives». Moscow, 29–31 May 2006.
  6. Khramenkov S. V., Pakhomov A. N., Strel’tsov S. A., Kevbrina M. V., Vaniushina A. Ia., Agarev A. M. Povyshenie effektivnosti obrabotki osadka stochnykh vod s pomoshch’iu vysokotemperaturnogo gidroliza pered sbrazhivaniem [Improving the efficiency of wastewater sludge treatment with the use of high-temperature hydrolysis before digestion]. Vodosnabzhenie i Sanitarnaia Tekhnika, 2012, no. 10, pp. 55–60. (In Russian).
  7. Rublevskaia O. N., Mel’nik E. A. Puti resheniia problemy energosberezheniia v sisteme kanalizovaniia Sankt-Peterburga [Tackling the problem of energy saving in the St. Petersburg wastewater system]. Vodosnabzhenie i Sanitarnaia Tekhnika, 2012, no. 12, pp. 45–51. (In Russian).
  8. Pe’rez-Elvira S., Fdz-Polanco M., Plaza F. I., Garralon G., Fdz-Polanco F. Ultrasound pre-treatment for anaerobic digestion improvement. Water Science & Technology, 2009, vol. 66 (6), pp. 1525–1532.
  9. Hogan F., Mormede S., Clark P., Crane M. Ultrasonic sludge treatment for enhanced anaerobic digestion. Water Science & Technology, 2004, vol. 50 (9), pp. 25–32.
  10. Roxburgh R., Sieger R., Johnson B., Rabinowitz H., Goodwin S. Sludge minimization technologies – doing more to get less: Proceedings of the Water Environment Federation, WEFTEC 2006: Session 1 through Session 10, pp. 506–525 (20).
  11. Jenicek P., Bartacek J., Kutil J., Zabranska J., Dohanyos M. Potentials and limits of anaerobic digestion of sewage sludge: Energy self-sufcient municipal wastewater treatment plant? Water Science & Technology, 2012, vol. 66 (6), pp. 1277–1281.
  12. Puchajda B., Oleszkiewicz J. Single and two-stage anaerobic digestion: Hydrolysis, Acidification and Pathogen Inactivation 2003. Proceedings of the Water Environment Federation – WEFTEC 2003. Session 61 through Session 70, pp. 284–301 (18).
  13. Ostapczuk R., Bassette P. C., Dassanayake C., Bevington G. Recuperative thickening: decoupling the SRT from the HRT reduces capital expenditures and increases biogas production for CHP utilization: Procee­dings of the Water Environment Federation – WEFTEC 2011. Session 31–40, pp. 2348–2355 (8).
  14. Nikolaev Iu. A., Kevbrina M. V., Dorofeev A. G., Vaniushina A. Ia., Agarev A. M. Vysokoeffektivnaia tekhnologiia metanovogo sbrazhivaniia osadka stochnykh vod s retsiklom biomassy [High technology of me­thane digestion of wastewater sludge with biomass recycling]. Vodosnabzhenie i Sanitarnaia Tekhnika, 2012, no. 10, pp. 61–67. (In Russian).
  15. Vanyushina A. Ya., Agarev A. M., Moyzhes S. I., Nikolaev Yu. A., Kevbrina M. V., Kozlov M. N. Comparison of different thickening methods for active biomass recycle to anaerobic digestion of wastewater sludge. Water Science & Technology, 2012, vol. 66 (8), pp. 1787–1793.

Журнал ВСТ включен в новый перечень ВАК

Шлафман В. В. Проектирование под заданную ценность, или достижимая эффективность технических решений – что это?

Banner Kofman 1