№12|2020

ОЧИСТКА СТОЧНЫХ ВОД

УДК 579.695+579.8

Гогина Е. С., Баженов В. И., Соколова К. Н.

Бактериальный состав активного ила: идентификация и визуализация

Аннотация

Цель работы – описание возможностей способа визуализации бактерий активного ила на основе сведений интернет-ресурса для разработки учебных пособий и/или руководств. Рассмотрены современные методы микроскопии бактериального сообщества: оптическая световая, сканирующая электронная (СЭМ), трансмиссионная элект­ронная (ТЭМ), конфокальная (КЛСМ), флуоресцентная гибридизация in situ (FISH), секвенирование нового поколения (СНП). На основе представленных методов приведены примеры бактериальной флокуляции активного ила с внеклеточными и резервными биополимерами. По наибольшей частоте цитирований в специальных справочниках и литературе составлена выборка наиболее типичных бактерий из состава флокул активного ила. Даны примеры визуализации четырех бактерий методами СЭМ, ТЭМ, КЛСМ, FISH: Bacillus subtilis (грамположительная, спорообразующая, факультативно аэробная), Nitrospira defluvii (грамотрицательная, аэробная, хемолитотрофная, нитритокисляющая), Candidatus «Accumulibacter phosphatis» (грамотрицательная, фосфатаккумулирующая), Candidatus «Microthrix parvicella» (грамположительная, нитчатая, актиномицет). Интернет-ресурс к настоящему времени содержит достаточное количество достоверных данных по визуа­лизации бактерий активного ила, их функциональности и свойствам по отношению к ключевым процессам биологической очистки, классификации или таксономии, а также по методам их микроскопического изучения. Реа­лизация возможностей по идентификации бактериального состава активного ила и количественного соотношения гетеротрофной, автотрофной и фосфатаккумулирующей био­массы позволяет выполнять настройку и/или калиб­ровку моделей ряда ASM (например, в программных средах ­GPS-X, BioWin и др.).

Ключевые слова

, , , , , , , , ,

Дальнейший текст доступен по платной подписке.
Авторизуйтесь: введите свой логин/пароль.
Или оформите подписку

Список цитируемой литературы

  1. Роговская Ц. И. Биохимический метод очистки производственных сточных вод. – М.: Стройиздат, 1967. 140 с. Rogovskaia Ts. I. Biokhimicheskii metod ochistki stochnykh vod [Biochemical method of wastewater treatment. Moscow, Stroiizdat Publ., 1967, 140 p.].
  2. Никитина Л. И., Жуков А. В., Трибун М. М. Видовой состав, сезонная динамика и морфоэкологические особенности цилиофауны аэротенков очистных сооружений // Вода: химия и экология. 2011. № 12. С. 56–62. Nikitina L. I., Zhukov A. V., Tribun M. M. [Species composition, seasonal dynamics and morpho-ecological features of the ciliofauna of aeration tanks of treatment facilities]. Voda: Khimiia i Ekologiia, 2011, no. 12, pp. 56–62. (In Russian).
  3. Джумагулова Н. Т., Гаврилов И. Е., Нгуен Динь Дап. Изучение видового состава микроорганизмов, осуществляющих очистку сточных вод // Известия Томского политехнического университета. Инжиниринг георесурсов. 2019. Т. 330. № 9. С.195–203. Dzhumagulova N. T., Gavrilov I. E., Nguen Din’ Dap [Study of the species composition of microorganisms that purify wastewater]. Izvestiia Tomskogo Politekhnicheskogo Universiteta. Inzhiniring Georesursov, 2019, v. 330, no. 9, pp. 195–203. (In Russian).
  4. Фауна аэротенков: атлас / Ответственный редактор Кутикова Л. А. – Л.: Наука, 1984. 264 с. Fauna aerotenkov: atlas [Aeration tank fauna: atlas. Publishing editor Kutikova L. A. Leningrad, Nauka Publ., 1984, 264 p.].
  5. Жмур Н. С. Технологические и биохимические процессы очистки сточных вод на сооружениях с аэротенками. – М.: АКВАРОС, 2003. 512 с. Zhmur N. S. Tekhnologicheskie i biochimicheskie protsessy ochistki stochnykh vod na sooruzheniiakh s aerotenkami [Technological and biochemical processes of wastewater treatment at the facilities with aeration tanks. Moscow, AKVAROS Publ., 2003, 512 p.].
  6. Баженов В. И., Королева Е. А. Нитчатое вспухание активного ила. Идентификация, технологическое управление, инженерная защита // Водоснабжение и канализация. 2014. № 5–6. С. 45–50. Bazhenov V. I., Koroleva E. A. [Filamentous bulking of activated sludge. Identification, process management, engineering protection]. Vodosnabzhenie i Kanalizatsiia, 2014, no. 5–6, pp. 45–50. (In Russian).
  7. Rossetti S., Tandoi V., Wanner J. Activated sludge separation problems. Theory, control measures, practical experiences. IWA Publishing, 2017, 300 p.
  8. Jenkins D., Wanner J. Activated sludge – 100 years and counting. IWA Publishing, 2014, 424 p.
  9. Альбертс Б., Брей Д., Хопкин К. и др. Основы молекулярной биологии клетки / Перевод с английского. – М.: БИНОМ. Лаборатория знаний, 2015. 768 с. Alberts B., Bray D., Hopkin K., et al. Osnovy molekuliarnoi biologii kletok [Essential molecular cell biology. Translated from English. Moscow, BINOM Laboratoriia Zhanii Publ., 2015, 768 p.].
  10. Nielsen J. L., et al. Chapter 7. Microscopy. Experimental methods in wastewater treatment. Edited by M. C. M. van Loosdrecht, P. H. Nielsen, C. M. Lopez-Vazquez and D. Brdjanovic. IWA Publishing, 2016, p. 263–284.
  11. Базякина Н. А. Очистка концентрированных промышленных сточных вод. – М.: Госстройиздат, 1958. 79 с. Baziakina N. A. Ochistka kontsentrirovannykh promyshlennykh stochnykh vod [Concentrated industrial wastewater treatment. Moscow, Gosstroiizdat Publ., 1958, 79 p.].
  12. Eikelboom D. Identification and control of filamentous micro-organisms observed in industrial waste water treatment plants. IWA Publishing, 2006.
  13. Jenkins D., Richard M. G., Daigger G. T. Manual on the causes and control of activated sludge bulking, foaming and other solids separation problems. CRC Press, 2003. 236 p.
  14. Li D. H., Ganczarczyk J. J., Jenkins D. Physical characteristics of activated-sludge flocs. CRC Critical Reviews Environmental Control, 1986, no. 17, pp. 53–87.
  15. Сидорова Л. П., Снигирева А. Н. Очистка сточных и промышленных вод. Часть II. Биологическая очистка. Активный ил. Оборудование: Учебное электронное текстовое издание. Екатеринбург, 2017. 125 с. URL: https://study.urfu.ru/Aid/Publication/13594/1/Sidorova_Snigireva_.pdf (дата обращения 9.09.2020). Sidorova L. P., Snigireva A. N. Ochistka stochnykh i promyshlennykh vod. Tchast’ II. Biologicheskaia ochistka. Aktivnyi il. Oborudovanie [Wastewater and industrial wastewater treatment. Part II. Biological treatment. Activated sludge. Equipment. Educational electronic text edition. Ekaterinburg, 2017, 125 p.]. Available at: https://study.urfu.ru/Aid/Publication/13594/1/Sidorova_Snigireva_.pdf (accessed September, 2020). (In Russian).
  16. Shanono I. H., Sapiee M. R. N., Aziz K. A., Suleiman N. H. Z., Gomes A., Gomes C. Image processing techniques applicable to wastewater quality detection: Towards a hygienic environment. Journal of Materials and Environmental Sciences, 2018, no. 9 (8), pp. 2288–2303.
  17. Захватаева Н. В., Шеломков А. С. Активный ил как управляемая экологическая система. – М.: Экспо-Медиа-Пресс, 2013. 286 с. Zakhvataeva N. V., Shelomkov A. S. Aktivnyi il kak upravliaemaia ekologicheskaia sistema [Activated sludge as a controlled ecological system. Moscow, Ekspo-Media-Press Publ., 2013, 286 p.].
  18. Janssen P. M. J., Meinema K., Roest H. F. Biological phosphorus removal. Manual for design and operation. STOWA NL and IWA Publishing, 2002, 210 p.
  19. Cai M., Wang Q., Wells G., Dionysiou D. D., Song Z., Jin M., Hu J., Ho S. H., Xiao R., Wei Z. Improving dewaterability and filterability of waste activated sludge by electrochemical Fenton pretreatment. Chemical Engineering Journal, 2019, no. 362, pp. 525–536. Available at: https://doi.org/10.1016/j.cej.2019.01.047 (accessed September 9, 2020).
  20. Liss S. N., Liao B., Droppo I. G., Allen D., Leppard G. G. Effect of solids retention time on floc structure. Water Science and Technology, 2002, v. 46, no. 1–2, pp. 431–438. Available at: https://iwaponline.com/wst/article-pdf/46/1-2/431/476962/431.pdf (accessed September 9, 2020).
  21. Badireddy A. R., Chellam S., Gassman P. L., Engelhard M. H., Lea A. S., Rosso K. M. Role of extracellular polymeric substances in bioflocculation of activated sludge microorganisms under glucosecontrolled conditions. Water Research, 2010, no. 44 (15), pp. 4505–4516. Available at: https://doi.org/10.1016/j.watres.2010.06.024 (accessed September 9, 2020).
  22. Günther S., Trutnau M., Kleinsteuber S., Hause G., Bley T., Röske I., Harms H., Müller S. Dynamics of polyphosphate-accumulating bacteria in wastewater treatment plant microbial communities detected via DAPI (4′,6′-diamidino-2-phenylindole) and tetracycline labeling. Applied and Environmental Microbiology, 2009, v. 75, no.7, pp. 2111–2121. Available at: https://aem.asm.org/content/75/7/2111 (accessed September 9, 2020).
  23. Pronk M., Neu T. R., van Loosdrecht M. C. M., Lin Y. M. The acid soluble extracellular polymeric substance of aerobic granular sludge dominated by Defluviicoccus sp. Water Research. 2017, no. 22, pp. 148–158. Available at: https://doi.org/10.1016/j.watres.2017.05.068 (accessed September 9, 2020).
  24. Nielsen P. H., Daims H., Lemmer H. FISH Handbook for biological wastewater treatment. IWA Publishing, 2009, 123 p.
  25. Gabriel B. Wastewater microbiology. 3rd ed. John Wiley & Sons, Inc., 2005, 772 p.
  26. Mara D., Horan N. Handbook of water and wastewater microbiology. Academic Press, 2003, 610 p.
  27. Gerardi M. H. Wastewater bacteria. John Wiley & Sons, Inc., 2006, 255 p.
  28. Seviour R., Nielsen P. H. Microbial ecology of activated sludge. IWA Publishing, 2010, 688 p.
  29. Zweers J. C., Barák I., Becher D., Driessen A. J. M., Hecker M., Kontinen V. P., et al. Towards the development of Bacillus subtilis as a cell factory for membrane proteins and protein complexes. Microbial Cell Factories, 2008, no. 7:10. Available at: https://link.springer.com/article/10.1186/1475-2859-7-10 (accessed September 9, 2020).
  30. Lukumbuzya M., Schmid M., Pjevac P., Daims H. A multicolor fluorescence in situ hybridization approach using an extended set of fluorophores to visualize microorganisms. Frontiers in Microbiology, 2019, 10:1383. Available at: https://www.frontiersin.org/articles/10.3389/fmicb.2019.01383/full?report=reader (accessed September 9, 2020).
  31. Nowka B., Off S., Daims H., Spieck E. Improved isolation strategies allowed the phenotypic differentiation of two Nitrospira strains from widespread phylogenetic lineages. FEMS Microbiology Ecology, 2015, no. 91 (3), fiu031. Available at: https://academic.oup.com/femsec/article/91/3/fiu031/431190 (accessed September 9, 2020).
  32. Welles L., Lopez-Vazquez C. M., Hooijmans C. M., van Loosdrecht M. C. M., Brdjanovic D. Prevalence of ‘Candidatus Accumulibacter phosphatis’ type II under phosphate limiting conditions. AMB Express. 2016, 6:44. Available at: https://doi.org/10.1186/s13568-016-0214-z (accessed September 9, 2020).
  33. Welles L., Abbas B., Sorokin D. Y., Lopez-Vazquez C. M., Hooijmans C. M., van Loosdrecht M. C. M., Brdjanovic D. Metabolic Response of «Candidatus Accumulibacter Phosphatis» Clade II C to Changes in Influent P/C Ratio. Frontiers in Microbiology, 2017, 7:2121. Available at: https://www.frontiersin.org/articles/10.3389/fmicb.2016.02121/full (accessed September 9, 2020).
  34. Blackall L. L., Crocetti G., Saunders A. M., Bond P. L. A review and update of the microbiology of enhanced biological phosphorus removal in wastewater treatment plants. Antonie van Leeuwenhoek, 2002, no. 81, pp. 681–691. Available at: https://doi.org/10.1023/A:1020538429009 (accessed September 9, 2020).
  35. Neis U., Banduch I., Nickel K. Stimulation of aerobic and anaerobic biological processes by ultrasound. Proceedings EWA, Sustainable Wastewater management – New solutions for new problems, Munich, 2012. Available at: https://pdfs.semanticscholar.org/626a/ad07362a82047e9a7e9c702624791d955282.pdf (accessed September 9, 2020).
  36. Rossetti S., Tomei M. C., Nielsen P. H., Tandoi V. «Microthrix parvicella», a filamentous bacterium causing bulking and foaming in activated sludge systems: a review of current knowledge. FEMS Microbiology Reviews, 2005, no. 29 (1), pp. 49–64. Available at: https://doi.org/10.1016/j.femsre.2004.09.005 (accessed September 9, 2020).
  37. Stratton H. M., Webb R., Seviour E. M., Blackall L. L., Seviour R. J. Ultrastructure of Microthrix parvicella from activated sludge. Letters in Applied Microbiology, 1996, no. 23, pp. 85–88. Available at: https://doi.org/10.1111/j.1472-765X.1996.tb00036.x (accessed September 9, 2020).
  38. Sheik A., Muller E., Audinot J., Lebrun L. A., Grysan P., Guignard C., Wilmes P. In situ phenotypic heterogeneity among single cells of the filamentous bacterium Candidatus Microthrix parvicella. ISME Journal, 2016, no. 10, pp. 1274–1279. Available at: https://doi.org/10.1038/ismej.2015.181 (accessed September 9, 2020).
  39. Borrás F. L. Técnicas microbiológicas aplicadas a la identificación y cuantificación de organismos presentes en sistemas EBPR (Microbiological techniques applied to identification and quantification of organisms present in EBPR systems). Ph. D Thesis, Universitat Politècnica de València, Valencia, Spain, 2008. Available at: https://dialnet.unirioja.es/servlet/tesis?codigo=250991 (accessed September 9, 2020).

Журнал ВСТ включен в новый перечень ВАК

Шлафман В. В. Проектирование под заданную ценность, или достижимая эффективность технических решений – что это?

Banner Kofman 1