Tag:rail tracks

№12|2018

SURFACE RUNOFF TREATMENT

bbk 000000

UDC 504.064

Teplykh Svetlana, Strelkov A. K., Bukhman N. S., Gorshkalev P. A.

Mathematical modeling of water course pollution with surface runoff from railroad tracks

Summary

The directions of railroad tracks located in the Ryazan, Tambov, Penza, Ulyanovsk, Orenburg Regions, Mordovia, Tatarstan, and Bashkiria are considered. The parameters and characteristics of the railroad tracks of the Kuibyshev railway on the section of the Samara Region: the length of the section, number of crossings with water bodies, average crossing value per 1 km, crossed water bo­dies, the length of the water flow along the railroad tracks, specific combined index of river water pollution are presented. The average value of railway crossings with water bodies in the Samara Region is 0.549/km, i. e. approximately one crossing per every 500 m. Correspondingly in every 500 m surface runoff from the road track and adjacent area enters the water body from four sides. A method of mathe­matical modeling of surface runoff from railroad bed entering water bodies is proposed provided water bodies are located parallel to transport trunk railways in the presence and introduction of previously ignored additional pollution into water bodies. The requirement for surface runoff from railroad and water body crossings treatment is substantiated.

Key words

, , , ,

 

№12|2015

ENVIRONMENTAL PROTECTION

bbk 000000

ГВС 628.3:625.042

Strelkov A. K., Teplykh Svetlana, Gorshkalev P. A., Sargsyan A. M.

Calculating the charge for the negative environmental impact produced by rail transport facilities

Summary

Basing on the results of chemical analyses and regulatory requirements to the environmental protection activities the analysis of the impact of surface runoff from rail transport facilities on the environment was carried out. Different charges imposed on natural resource users for water body pollution are described. The efficiency aspects of investing in the development of wastewater treatment and polishing are addressed. The costs associated with treatment will depend on the wastewater flow that determines the capacity of the treatment facilities, as well as on the required concentration of pollutants in the effluent that determines the required level of treatment, i.e. the number of stages and treatment technology. Under the conditions of the capital investment tightness it would be reasonable to determine the efficient investment trends in each particular case. The maximum permissible discharge of any pollutant will depend on its permissible concentration in wastewater that is assumed as a basis for designing treatment facilities. The evaluation of the investment efficiency is carried out by specifying the discharge of pollutants into water bodies that will determinate the cumulative expenses. The minimum cumulative expenses including the annual construction and operation expenditures as well as the effluent charge could be determined for every pollutant. To substantiate the expediency of surface runoff collection, removal and treatment the calculation of charging for nonpoint discharge of the surface runoff from rail tracks was carried out.

Key words

, , , , ,

 

Журнал ВСТ включен в новый перечень ВАК

Шлафман В. В. Проектирование под заданную ценность, или достижимая эффективность технических решений – что это?

Banner Kofman 1